Latest Atmospheric Neutrino Oscillation Results from Super-Kamiokande

Thomas Wester*, University of Chicago On behalf of the Super-Kamiokande Collaboration Fermilab Wine & Cheese Seminar, 2024 Feb 09

*Now an SBND collaborator

Neutrino Mass Ordering

Two heavy & one light neutrino or the other way around?

Neutrino-less Double beta decay

de Salas et al. Front. Astron. Space Sci. 5 (2018)

2024/02/09

Neutrino-less Double beta decay

Supernova

de Salas et al. Front. Astron. Space Sci. 5 (2018)

Cosmology

de Salas et al. Front. Astron. Space Sci. 5 (2018)

Neutrino-less

K. Scholberg, J. Phys. G. Nucl. Part. 45 014002 (2017)

S. Agarwal, H. Feldman, Mon. Not. R. Astron. Soc. 410 3 (2011)

Neutrino Mass & Oscillations

Neutrino flavor states \neq mass states \rightarrow Mixing

Neutrino Mass & Oscillations

PDG 2023 World Averages							
Parameter	Value	1σ	Uncertainty (%)				
$sin^2 \theta_{12}$	0.307	0.013	4				
sin²θ ₁₃	0.0220	0.0007	3				
$sin^2\theta_{23}$	0.547	0.021	4				

0.21

0.18

0.033

1.23

7.53

2.437

 δ_{CP}/π (Rad.)

 Δm_{21}^2 (×10⁻⁵ eV²)

 $|\Delta m^{2}_{32}|$ (×10⁻³ eV²)

17

2

1

Neutrino Mass & Oscillations

Mass Ordering in Neutrino Oscillations

Matter effect: Electron neutrino forward scattering introduces dependence on sign of Δm^2 ,

RENO, Daya Bay, Double Chooz reactor neutrino experiments: $\theta_{13} \approx 8.5^{\circ}$

 $\Rightarrow v_{\mu} \rightarrow v_{e} \text{ or } \bar{v}_{\mu} \rightarrow \bar{v}_{e} \text{ resonance possible when } 2\sqrt{2}G_{F}N_{e}E/\Delta m^{2} \sim 1$

Mass Ordering Challenges

• Size of Matter Effect

• Degeneracy with δ_{CP}

Mass Ordering Challenges

Neutrino beams travel through earth's crust, $\rho \sim 3 \text{ g/cm}^3$ $\rightarrow 2\sqrt{2}G_F N_A E \rho / \Delta m^2 \sim 0.2$ for 1 GeV neutrino

- Increase effect using longer L and higher E
- Increase ρ? inner Earth layers 5–11 g/cm³ (more on this later)
- Degeneracy with δ_{CP}

Image: Fermilab DUNE

Mass Ordering Challenges

Neutrino beams travel through earth's crust, $\rho \sim 3 \text{ g/cm}^3$

- $\rightarrow 2\sqrt{2}G_F N_A E \rho / \Delta m^2 \sim 0.2$ for 1 GeV neutrino
- Increase effect using longer L and higher E
- Increase p? inner Earth layers 5–11 g/cm³ (more on this later)
- Degeneracy with δ_{CP}
 - Mass ordering signal is enhanced $v_{\mu} \rightarrow v_{e}$ or $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ oscillations, same signal for $\delta_{CP} \neq 0$, π
 - Maximum v_e appearance is best-fit by normal ordering & $\delta_{CP}\sim$ - $\pi/2$, but multiple combinations can explain other outcomes

Present Status from Neutrino Beams

NOvA contour: Phys. Rev. D **106**, 032004 (2022)

Atmospheric Neutrino Oscillation Analysis

<u>arXiv:2311.05105</u> Data release: <u>10.5281/zenodo.8401262</u>

Atmospheric Neutrinos

Production in particle θ_z showers from cosmic rays: $\pi^+ o \mu^+ + \nu_\mu$ $\pi^- \to \mu^- + \bar{\nu}_\mu$

Atmospheric Neutrino Flux

2024/02/09

Latest Atmospheric Neutrino Results from Super-K · Thomas Wester · Fermilab Wine & Cheese Seminar

Atmospheric Neutrino Flux

2024/02/09

Mass Ordering in Atmospheric Neutrinos

Mass Ordering in Atmospheric Neutrinos

Parameters $sin^2\theta_{23} = 0.5$ $\Delta m^2_{32} = 2.4 \times 10^{-3}$ $\delta_{CP} = -\pi/2$ $sin^2\theta_{13} = 0.022$

Latest Atmospheric Neutrino Results from Super-K \cdot Thomas Wester \cdot Fermilab Wine & Cheese Seminar

Super-K Experiment

Mt. Ikenoyama (1 km overburden)

Inner detector 11,000 inwardfacing 20" PMTs

41.4 m

39.3 m

Outer detector · Cosmic veto 1,800 outward-facing 8" PMTs

~2 ns resolution

Latest Atmospheric Neutrino Results from Super-K · Thomas Wester · Fermilab Wine & Cheese Seminar

Super-K Timeline

Latest Atmospheric Neutrino Results from Super-K · Thomas Wester · Fermilab Wine & Cheese Seminar

Super-K Events

Cherenkov rings for reconstructing particle type, direction, & momentum

+ Also detect time-clustered hits from low-energy decay electrons & neutrons

- Can't distinguish charge, no event-by-event v/\bar{v} separation
- Miss low-momentum hadrons below Cherenkov threshold

2024/02/09

		مار ، مار مر م			0

1 GeV µ or e (APFIT) Vertex resolution 20 cm Direction resolution 1.5° 201

Aomentum resolution	3%
Mis-PID rate	0.7%

Atmospheric Neutrino Events

Fully Contained (FC)

Fiducial vertex, no exiting particles

Partially Contained (PC)

Fiducial vertex, exiting particles

SK Atmospheric Neutrinos

2024/02/09

Latest Atmospheric Neutrino Results from Super-K · Thomas Wester · Fermilab Wine & Cheese Seminar

Neutrino/Anti-Neutrino Separation

$$\nu_e + N \to N + e^- + \pi^+ \longrightarrow$$

$$\bar{\nu}_e + N \rightarrow N + e^+ + \pi^- \longrightarrow$$

Latest Atmospheric Neutrino Results from Super-K · Thomas Wester · Fermilab Wine & Cheese Seminar

Neutrino/Anti-Neutrino Separation

Neutron tagging in SK: JINST 17 P10029 (2022)

Neutrons: More produced for anti-neutrino interactions

- 2008 upgrade: Tagged 2.2 MeV gammas from neutron capture on hydrogen during SK IV–V phases (57% of total exposure)
- 26% tagging efficiency with neural network

Neutrino/Anti-Neutrino Separation

Neutron tagging in SK: JINST **17** P10029 (2022)

Neutrons: More produced for anti-neutrino interactions

- 2008 upgrade: Tagged 2.2 MeV gammas from neutron capture on hydrogen during SK IV–V phases (57% of total exposure)
- 26% tagging efficiency with neural network

Latest Atmospheric Neutrino Results from Super-K · Thomas Wester · Fermilab Wine & Cheese Seminar

Multi-Ring BDT

0.12 0.8 1 Multi-ring events are more complicated to reconstruct, but offer more information 0.5 10⁻²

©Distribution of ring momenta to improve v_e - \bar{v}_e separation in addition to 0.04he number of decay electrons

GeoBoosted decision tree (BDT) classifier with 7 input variables
implemented in SK I−V analysis, replacing previous likelihood method
Most energetic ring PID
Number of decay electrons

6

Multi-Ring BDT

0.12 0.8 1 Multi-ring events are more complicated to reconstruct, but offer more information 0.5 10⁻²

•••Distribution of ring momenta to improve $v_e - \bar{v}_e$ separation in addition to •••Distribution of decay electrons

Generation tree (BDT) classifier with 7 input_variables
implemented in SK I–V analysis, replacing previous likelihood method
Most energetic ring PID
Number of decay electrons

6

Latest Atmospheric Neutrino Results from Super-K · Thomas Wester · Fermilab Wine & Cheese Seminar

Expanded Fiducial Volume

A. Takenaka et al. (SK Collaboration) Phys. Rev. D **102**, 112011 (2020)

15 1(Conventional z (m) 22.5kt -10-15 300 50 100 150 200 250 n r^{2} (m²)

FC Event vertices, SK I-V

New for SK I–V analysis: Increased fiducial volume for FC events from 22.5 kt \rightarrow 27.2 kt for all SK phases

Expanded Fiducial Volume

A. Takenaka et al. (SK Collaboration) Phys. Rev. D **102**, 112011 (2020)

New for SK I–V analysis: Increased fiducial volume for FC events from 22.5 kt \rightarrow 27.2 kt for all SK phases

• Reconstruction: Likelihoods used in PID & vertex fitters updated with dependence on distance to wall

Expanded Fiducial Volume

A. Takenaka et al. (SK Collaboration) Phys. Rev. D **102**, 112011 (2020)

New for SK I–V analysis: Increased fiducial volume for FC events from 22.5 kt \rightarrow 27.2 kt for all SK phases

- Reconstruction: Likelihoods used in PID & vertex fitters updated with dependence on distance to wall
- Background: New reduction cuts added to reject entering cosmic muons. Background in additional volume is 0.5% (0.1% in conventional volume)

IPER

+ SK IV–V samples with neutron tagging

SK IV–V single-ring samples with neutron tagging selection included as additional samples in SK I–V analysis

χ^2 Calculation

Data set	Samples	Bins	Systematic uncertainties	Free parameters	Minimization
6511 live days 0.48 Mton·years	29	930 2D cosθ _z vs. momentum	194 Detector: 29×5 phases Flux & xsec: 49	$\sin^2 heta_{23}, \Delta m^2_{32}, \delta_{CP},$ ordering Also perform fit with θ_{13} free	Grid scan

Results: $\Delta m_{32}^2 \& sin^2 \theta_{23}$

SK I–V best fit With reactor constraint: $sin^2\theta_{13} = 0.0220\pm0.0007$

 $\sin^2 \theta_{23} \sim 0.45$ (lower octant) $\Delta m^2_{32} \sim 2.4 \times 10^{-3} \text{ eV}^2$

> MINOS: Phys. Rev. Lett. **125**, 131802 (2020) NOvA: 10.5281/zenodo.4142045 (2020) T2K: Eur. Phys. J. C **83**, 782 (2023) IceCube: Phys. Rev. D **108**, 012014 (2023)

 $\Delta \chi^2$

Results: Mass Ordering & δ_{CP}

SK I–V best fit With reactor constraint: $\sin^2\theta_{13} = 0.0220\pm0.0007$

Normal ordering, $\Delta \chi^{2}_{\text{I.O. - N.O.}} \sim 5.7^{*}$ $\delta_{\text{CP}} \approx -\pi/2$

*Mass Ordering Significance

- Generate toy data sets to obtain distribution of $\Delta\chi^2_{\text{NO-IO}}$
- **CL**_s **statistic** corrects probability of rejecting the inverted ordering by probability of rejecting normal ordering

$$CL_{S} = \frac{p_{IO}}{1 - p_{NO}} \approx 0.077$$

Reject inverted ordering at the ~92% confidence level.

Mass Ordering in the Data

Upward-going / downward going ratio in multi-GeV *e*-like samples shows consistent excess in mass orderingsensitive bins

SK+T2K Joint Fit

First report: <u>A. Eguchi, NNN23 Procida</u> <u>L. Berns, KEK-JPARC Seminar</u>

T2K Experiment

Precision long-baseline experiment measuring Δm^2_{32} , $\sin^2 \theta_{23}$, $\delta_{\rm CP}$

- Neutrino flux peaked at 600 MeV, CC Quasi-elastic (CCQE) primary interaction channel
- ND280 near detector constrains flux & cross section uncertainties
- >3.6×10²¹ POT accumulated since 2010:
 - FHC (v-mode) 1.97×10²¹ POT
 - RHC (v-mode) 1.64×10²¹ POT

Joint Fit Overview

Joint fit combines existing SK & T2K analyses into single framework

Joint fit goals:

- **Demonstrate complementarity** of precision accelerator measurement & large matter effect in atmospheric neutrinos
- Combined cross section model for accelerator & atmospheric events
 Ly T2K near detector constraints applied to atmospheric samples
- Correlated detector systematics

SK + T2K Near Detector Constraints

Near detector constraint found to cause excess in SK atmospheric CC1 π sample from study of downward-going (un-oscillated) control data

- Excess can potentially bias δ_{CP} measurement

SK + T2K Near Detector Constraints

Near detector constraint found to cause excess in SK atmospheric CC1 π sample from study of downward-going (un-oscillated) control data

- Excess can potentially bias δ_{CP} measurement
- Add new uncertainty on pion momentum: Changes number of pions above/below Cherenkov threshold in SK, small effect on near detector

SK + T2K Near Detector Constraints

Improvement in SK sin² θ_{23} sensitivity from T2K ND constraint

Detector Systematics

- Same reconstruction is applied to SK & T2K events
 → Detector systematics are fully correlated
- Overall small effect on
- oscillation parameter sensitivities. Expect to become more relevant with higher statistics

T2K + SK IV Joint Fit Sensitivities

- Mass ordering- δ_{CP} degeneracy broken for $0 < \delta_{CP} < \pi$
- Gains in sensitivity beyond simple likelihood sum

T2K + SK IV Joint Fit Results: δ_{CP} & Octant

Bayesian results,

frequentist results in preparation

Best fit in the normal ordering, $\delta_{CP} \sim -\pi/2$

SK & T2K data slightly prefer different octants for $\sin^2\theta_{23}$, joint fit has no strong preference

Posterior density

8.0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0 = -3

Both ordering

-2

-1

CP conservation rejected at 90%-2*o* level Depending on prior choice & out-of-model effects

0

Flat in δ_{CP}

1σ

2σ

3σ

SK + T2K preliminary

3

 δ_{CP}

Flat in $\sin \delta_{CP}$

---1σ

---- 2σ

..... 30

Coming soon: Comparisons between multiple fitting groups & frequentist results

SK-Gd: Super-K with Gadolinium

SK-Gd Idea

SK-Gd proposal: Phys. Rev. Lett. **93**, 171101 (2003)

Neutron captures	Gamma energy (MeV)	Capture time (µs)	Tagging efficiency (%)	Capture vertex resolution (cm)
H (pure water)	2.2	200	26	_
0.01% Gd	8	120	50	~100
0.03% Gd	8	60	75	~100

Gd Neuton Tagging in SK

Gd Neuton Tagging in SK

Diffuse supernova neutrino background (DSNB)

Gd Neuton Tagging in SK

Gadolinium Timeline

2014–: EGADS detector ~ mini-SK, ongoing Gd R&D

2018: SK-Gd water system installed, commissioned with pure water during 2019-2020

2020: 0.01% loading completed

2022: 0.03% loading completed

2024/02/09

SK-Gd Neutron Capture Measurements

0.03% Gd

SK-Gd DSNB analysis

APJ Lett. **951**:L27 (2023)

Diffuse Supernova Neutrino Background: Not-yet observed neutrino source expected from all past supernova

- ~7.5–30 MeV IBD signal window avoids reactor neutrinos & atmospheric background if neutron is tagged
- 0.01% SK-Gd data analyzed: Sensitivity is close to theoretical predictions, competitive with pure water phases

Latest Atmospheric Neutrino Results from Super-K · Thomas Wester · Fermilab Wine & Cheese Seminar

Summary

Atmospheric neutrinos

- Analyzed full pure water data set
- \bullet Prefer normal mass ordering, reject inverted ordering CLs ~ 0.077

Joint Analysis with T2K

- Developed robust analysis framework for combining SK atmospheric and T2K beam data sets
- Reject CP conservation at ~ 2σ level using ~50% of pure-water atmospheric data set

SK-Gd

- Neutron tagging is working, observing many more captures
- First Gd data is analyzed for DSNB, more soon!

2024/02/09

Latest Atmospheric Neutrino Results from Super-K · Thomas Wester · Fermilab Wine & Cheese Seminar

SK I–V Atmospheric Neutrino Oscillation Analysis

Comparison of Fiducial Volume Reconstruction Performance

Distributions show data/MC agreement before the application of any systematic uncertainties. Dashed lines show cut for e/μ or single/multi-ring classification.

All Multi-ring BDT Input Distributions

2024/02/09

Multi-ring BDT Efficiencies & Purities

Multi-ring sample	Likelih Previous SK)	iood analyses)	BDT (SK I–V analysis)	
	Efficiency (%)	Purity (%)	Efficiency (%)	Purity (%)
Ve	35	56	55	50
v _e	58	27	65	26
$v_{\mu} \& \bar{v}_{\mu}$	74	92	81	91
Other (NC)	57	30	31	43

2024/02/09

Results with θ_{13} Free

- Prefer **normal** ordering, $\Delta \chi^2_{IO-NO} \approx 5.2$
- Prefer sin²θ₁₃≈0.02, consistent with world-average reactor measurements

Neutron Tagging & Mass Ordering

Comparison between event selection from previous SK atmospheric neutrino oscillation publication & event selection using neutron tagging for SK IV-V (57% of total livetime) fully contained single-ring data

Oscillation parameters assumed: PDG 2022

Octant Effect on Oscillations

Mass Ordering Sensitivity vs. Octant

- Octant is constrained by sub-GeV events & multi-GeV v_μ events with small mass ordering sensitivity
- Figure: Sensitivity for combinations of oscillation parameters allowed at 90% confidence level
- Upper-octant values of θ_{23} are closer to observed $\Delta\chi^{2}{}_{\rm IO-NO},$ wide range

Tau Neutrinos: What's Next

SK I Multi-GeV Single-Ring e-like

SK v_{τ} Appearance with Neural Network

Tau CC signal

Background

Data

- Neural network based on Multi-ring BDT inputs + sphericity measure
- Fit 2D signal & background PDFs to data, >4 σ v_t appearance signal
- Planned incorporation into oscillation analysis

400

300

1D projections of PDF fit to data

event

of 1000

Reducing v_{τ} Contamination

- v_τ due to v_µ→v_τ oscillations appears in upward-going multi-GeV signal region for mass ordering
- No constraint from downward-going atmospheric neutrinos
- Developing neural network selection to divide Multi-GeV *e*-like events by v_τ probability to reduce impact of cross section uncertainty

2024/02/09

More on SK + T2K Joint Fit

T2K Oscillation Measurement

T2K uses $v_{\mu} \rightarrow v_{e}$ appearance to measure δ_{CP} & mass ordering

- Maximum v_e appearance for normal ordering & $\delta_{CP} \sim -\pi/2$, can exclude inverted ordering
- Degeneracy between mass ordering & δ_{CP} for nonmaximal values due to small matter effect

T2K Collaboration. Eur. Phys. J. C (2023) 83:782

Cross Section Model Overview

	Low-energy sub-GeV atm + beam	High-energy multi-GeV atm	
0005	T2K model with N correlated in low-E/hig	ID280 constraint, hE (except for high-Q ²)	
CCQE	high-Q ² params w/ND280	high-Q ² params w/o ND	
	add v_e/v_μ ratio unc. (CRPA)		
2p2h	T2K model w/ND280	SK model (100% error) + T2K-style shape	
Resonant	T2K model w/ND280 + new pion momentum dial + NC1π ⁰ uncertainties	SK model for 3 dials common with T2K, use more recent larger T2K priors	
DIS	T2K model w/ND280	T2K model w/ND280 SK model	
ντ	SK model (25% norm on top of other syst) for other systematics checked that we have no numerically unstable values		
FSI	T2K model w/ND280	T2K model w/o ND280 should be mostly same as SK model	
SI	T2K model, correlated in low-E/high-E only applied to FC and PC for atm, PN not applied to atm		

L. Berns, KEK-JPARC Seminar

T2K + SK IV Joint Fit Results 1D

 $\Delta \chi^2$ obtained from the numerical marginalization based on the importance sampling method.

The fixed $\Delta \chi^2$ does not guarantee the correct coverage, and therefore, the significance of CP symmetry exclusion is not given by the values of $\Delta \chi^2$ at $\delta CP = 0$, π .

T2K + SK IV Joint Fit Results 1D

2024/02/09

T2K + SK IV Joint Fit Results 1D

Joint Fit CP Conservation Summary

-							
	Analysis	Variable	Prior	$ 1\sigma$	90%	2σ	3σ
	Analysis 1 –	$\delta_{ ext{CP}}$	Flat in $\delta_{\rm CP}$	 ✓ 	\checkmark	\checkmark	×
Summary of two fitting			Flat in $\sin \delta_{\rm CP}$	\checkmark	$\checkmark(\times)$	×	×
groups, third group results in preparation		$J_{ m CP}$	Flat in $\delta_{\rm CP}$	\checkmark	\checkmark	\checkmark	×
			Flat in $\sin \delta_{\rm CP}$	\checkmark	\checkmark	\checkmark	×
Criteria for exclusion: $\delta_{CP} \rightarrow Exclude 0 \& \pi$	Analysis 2	$\delta_{ ext{cp}}$	Flat in $\delta_{\rm CP}$	✓	\checkmark	\checkmark	×
J _{CP} → Exclude 0			Flat in $\sin \delta_{\rm CP}$	\checkmark	$\checkmark(\times)$	×	×
		$J_{ m CP}$	Flat in $\delta_{\rm CP}$	\checkmark	\checkmark	\checkmark	×
			Flat in $\sin \delta_{\rm CP}$	\checkmark	\checkmark	$\checkmark(\times)$	×
		•	-	•			

✓: excluded X: not excluded

 \checkmark (x): excluded but may not be robust against the possible bias from an out-of-model effect

Joint Fit Results Table

SK+T2K Preliminary

Prior flat in $\delta_{\rm CP}$			
Normal ordering	$\delta_{\scriptscriptstyle ext{CP}}$	$\sin \delta_{\rm \tiny CP}$	$J_{\scriptscriptstyle \mathrm{CP}}$
Most probable value	-1.872	-1.000	-0.033
1σ	[-2.464, -1.205]	[-1.000, -0.776]	[-0.034, -0.026]
2σ	[-3.021, -0.556]	[-1.000, -0.261]	[-0.034, -0.008]
3σ	[-3.142, 0.085] and $[2.682, 3.142]$	[-1.000, 0.344]	[-0.035, 0.012]
Inverted ordering	$\delta_{ ext{cp}}$	$\sin \delta_{\scriptscriptstyle \mathrm{CP}}$	$J_{ m CP}$
Most probable value	-1.476	-1.000	-0.033
1σ	[-2.003, -0.976]	[-1.000, -0.870]	[-0.034, -0.029]
2σ	[-2.528, -0.506]	[-1.000, -0.523]	[-0.034, -0.017]
3σ	[-3.048, -0.023]	[-1.000, -0.052]	[-0.035, -0.002]
Both ordering	$\delta_{ ext{cp}}$	$\sin \delta_{\scriptscriptstyle \mathrm{CP}}$	$J_{\scriptscriptstyle \mathrm{CP}}$
Most probable value	-1.797	-1.000	-0.033
1σ	[-2.417, -1.159]	[-1.000, -0.787]	[-0.034, -0.026]
2σ	[-2.985, -0.552]	[-1.000, -0.281]	[-0.034, -0.009]
3σ	[-3.142, 0.072] and $[2.704, 3.142]$	[-1.000, 0.325]	[-0.035, 0.011]

Latest Atmospheric Neutrino Results from Super-K · Thomas Wester · Fermilab Wine & Cheese Seminar

Out-of-Model Effects Considered

List of Robustness Test

• 14 simulated data studies have been performed to test a possible bias in the analysis.

- The first six studies are taken from Appendix B of <u>Eur.Phys.J.C 83 (2023)</u> <u>9, 782</u>.
- Two alternative nuclear models are tested (our baseline model is SF)
 - LFG+RPA [<u>ref</u>]

 SF: Spectral Function

 LFG: Local Fermi Gas

 RPA: Random Phase Approximation

 HF: Hartree-Fock

 CRPA: Continuum Random Phase Approximation

• The last six studies were included to test possible problems that would come with the joint fit.

	Model component
Martini 2p2h	$2\mathrm{p}2\mathrm{h}$
ND280 data-driven pion kinematics	${ m CC1}\pi$
$CC0\pi$ non-QE alteration	$\mathrm{CC0}\pi$
Removal energy	Nuclear Model
Axial form factors	CCQE
Pion SI bug fix	$CC1\pi$, $CCn\pi$
LFG	Nuclear model
CRPA	Nuclear model
Pion multiplicity	$\mathrm{CC}n\pi$
${ m Energy-dependent}\sigma_{ u_e}/\sigma_{ u_\mu}$	$\sigma_{ u_e}/\sigma_{ u_\mu}$
Xsec-only fit	\mathbf{Fit}
Atmospheric down-going $\text{CC1}\pi$	$\mathrm{CC1}\pi$
Atmospheric full-zenith $CC1\pi$	$\mathrm{CC1}\pi$
No-migration energy scale fit	Fit

A. Eguchi SK+T2K joint analysis

sis NNN23 @ Procida

rocida Wednesday, 11th October, 2023

70

Latest Atmospheric Neutrino Results from Super-K · Thomas Wester · Fermilab Wine & Cheese Seminar

SK + T2K Model

SK + T2K Model

Reject inverted ordering at the ~98% confidence level

SK + T2K Model:

- External combination of SK & *published* T2K data by SK collaboration
- Tests effects of T2K constraints on Δm^2_{32} , $\sin^2\theta_{23}$, δ_{CP} , mass ordering on SK mass ordering result
- Previously done for SK 2018 oscillation analysis. Update for SK 2023 & T2K runs 1–9 was first shown at NEUTRINO 2022

Methods:

- Re-weight atmospheric MC to T2K's nominal flux and cross section parameters and approximate T2K's systematic uncertainty with ND constraint from published information
- Fit model prediction to published T2K bin counts as additional bins in atmospheric fit

Model based on on Phys. Rev. D **103**, 112008 (2021)

Comparison with Joint Fit

	SK I–V + constraints from T2K Runs 1-9 Model External analysis by SK, update T2K Model from 2018 SK analysis	T2K+SK IV Joint fit New formal joint effort between T2K & SK
Data products analyzed	Full atmospheric event info Published T2K bin counts	Full atmospheric event info Full T2K event info
Uncertainty model	Full atmospheric, simplified beam Correlated cross section uncertainties	Full atmospheric, full beam Correlated cross section + detector uncertainties, near detector included in correlation matrix
Atm. exposure/ Beam POT	6511.3 days (SK I–V) 14.9e20 v-mode, 16.3e20 ⊽-mode (T2K runs 1–9)	3244.4 days (SK IV) 19.7e20 v-mode , 16.3e20 ⊽-mode (T2K runs 1–10)
Event selection	29 atmospheric samples, neutron tagging for SK IV–V 5 T2K single-ring samples	18 atmospheric samples, no neutron tagging 5 T2K single-ring samples
Analysis	Profiled Δχ ²	Frequentist & Bayesian results, cross validation between multiple fitters

More details in backup. Previous SK publication: Phys. Rev. D 97, 072001 (2018)

2024/02/09

T2K Model Compared to T2K Runs 1–9 Analysis

- T2K Model based on published information is overall conservative compare to the T2K Runs 1–9 analysis
- Few-% difference in mass ordering preference and δ_{CP} best-fit & allowed ranges
- T2K run 10 data only recently published, and so is not included

Solar Neutrinos

2024/02/09

Solar Neutrinos

Neutrinos produced in the sun through fusion processes

- **B neutrinos** recorded by SK with direction and energy information
- Oscillation topics:
 - Oscillation parameters $\theta_{12}, \Delta m^2{}_{21}$
 - Day/night effect: Regeneration of solar neutrinos in earth matter
 - Solar upturn: MSW oscillations between ~1-5 MeV
- Other solar neutrino topics:
 - Flux modulation
 - Anti-neutrino search

SK Solar Neutrino Measurements

SK Solar Neutrino Oscillations

- SK data favors up-turn scenario below 5 MeV, but
 < 3.5 MeV data needed
- Recoil energy spectrum consistent with MSW oscillations

Solar Neutrino Global Fit Status

Progress Towards Upturn

- Need to lower current SK solar neutrino energy threshold to observe transition between matter and vacuum oscillations in solar neutrinos. Background-limited
- Dedicated hardware (WIT) searches un-triggered data for low-energy events & fits for fiducial vertex in real-time
- Some efficiency for solar neutrino identification down to 2.5 MeV recoil energy using BDT & WIT data

A. Yankelevich. (2022). Machine Learning Methods for Solar Neutrino Classification. (NEUTRINO2022 Poster)

Other Solar Neutrino Results

Solar ⁸B v flux modulation < 5% @ 95% C.L.

Solar Neutrino Global Fit of θ_{13}

