Proposal for Wire Tension Requirement

Aseet Mukherjee

13 Nov 23

Factors considered

- Dependence of dE/dx on tension
 - From Tom Junk's talk from last week, this does not seem much of a basis
- Gravitational Sag
 - Not relevant for X (wires vertical)
 - For U or V, 150cm length
 - $T = 4N \rightarrow \delta = 90 \ \mu m^{-1}$ << position tolerance

•
$$\delta \propto \frac{L^2}{T}$$

- Electrostatic motion
- Fluid flow

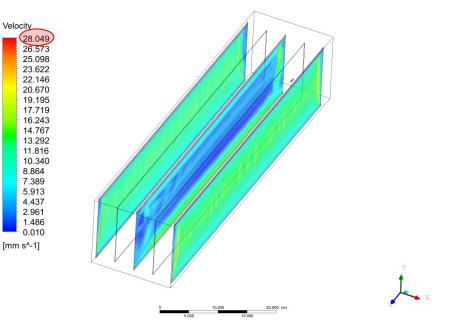
Electrostatics

Instability (wires fan out)

	0 05 45 40	- /	
ε ₀	8.854E-12	F/m	Earlier cm-mm mix up corrected (thanks to Sotiris)
ε _{LAr}	1.3281E-11	F/m	
S	4.79	mm	
g	4.75	mm	
d	0.1524	mm	
С	1.54007E-11	F/m	
V	820	V	
L	1500	mm	
Т _С	0.093708046	Ν	

- 4 N is way higher than needed
- $T_C \propto L^2$

Error Amplification

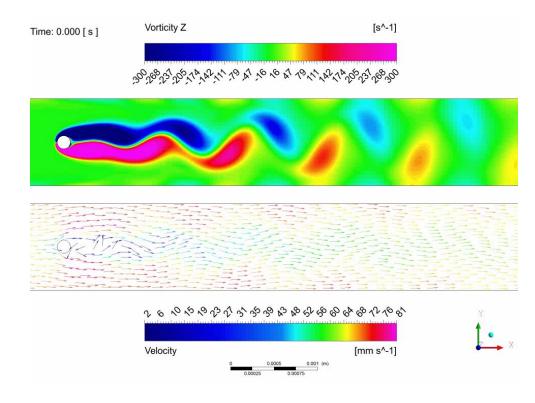

- Nominally zero force
- U, V: unaffected by small placement error (~zero charge on wire)
- X: displacements get amplified
 - Small term but need to quantify

• Scales as
$$\frac{L^2}{T}$$

Fluid Flow: Static Drag

- Assume 35 mm/sec (higher than normal for APAs)
- ~4·10⁻⁴ N/m
 - Done by Eric from drag on cylinder
 - I get similar result scaling from pressure drop on mesh
- L = 150 cm, T = 4N $\rightarrow \delta = 3 \ \mu$ m

•
$$\delta \propto \frac{L^2}{T}$$

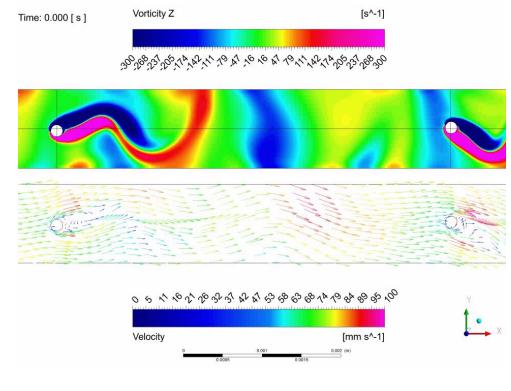


Fluid Flow: Vibration

- CFD from Erik Voirin
- Run mostly at 70mm/s: Velocity around APAs do not go that high
- Short answer
 - Don't expect much single-wire vibration
 - *Might* be significant coherent motion of the entire plane of wires
 - Safest to keep wire resonance (F_{wire}) > von Kármán frequency (F_{vortex})
 - *F*_{vortex} depends fluid velocity and wire size, but not tension or length
 - $F_{\text{wire}} \propto \frac{\sqrt{T}}{L}$

<mark>From Erik Voirin</mark>

Single wire

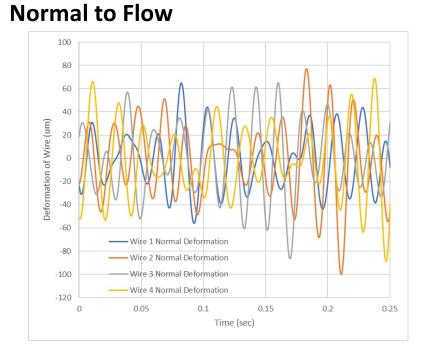


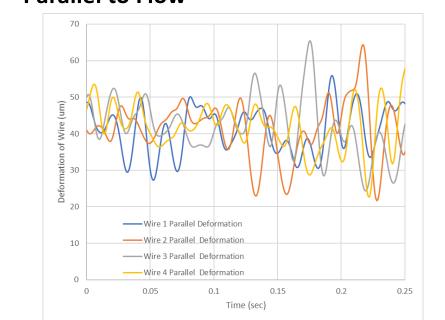
11/14/23

E.Voirin | SBN Wire motion CFD simulation

<mark>From Erik Voirin</mark>

Multi-wire vibration




11/14/23

E.Voirin | SBN Wire motion CFD simulation

From Erik Voirin

Wire Deformation, 4 Wires

Parallel to Flow

11/14/23

E.Voirin | SBN Wire motion CFD simulation

CFD Summary

- Tom's talk showed evidence of coherent motion
 - Would be useful to quantify and feed back to Erik to better understand this phenomenon
- $F_{\rm vortex} = 58 \, \text{Hz} @ V = 70 \, \text{mm/s}$
- $f \propto V$ so more realistic limit on resonance is 29 Hz @ 35 mm/s
- Erik mentions possibly adding more pumps, possibly increasing velocity

Summary

- Lot of affects, no one of which stands out
- In all cases, the relevant term is T/L^2 Short wire tension can be lower than long wire
- Higher tension \rightarrow more risk of breaking especially for short wires
- But $T_{\min} \propto L^2$ seems unnecessarily complicated
 - Winding data looks constant tension above 150mm, ~linear below 150mm

Proposal

$$T_{\min} < T < 8.5 \mathrm{N}$$
$$T_{\min} = \begin{cases} 4 \mathrm{N} \text{ for } L \ge 150 \mathrm{mm} \\ \frac{4 \mathrm{N}}{150 \mathrm{mm}} L \text{ for } L < 150 \mathrm{mm} \end{cases}$$