KLOE-to-SAND and ECAL + Magnet WG status report

Antonio Di Domenico Dipartimento di Fisica, Sapienza Università di Roma and INFN-Roma, Italy

> Danilo Domenici INFN-LNF, Frascati, Italy

SAND General/Technical Meeting – 14th November 2023

The SAND-ECAL working group

- Activities related to the extraction of the electromagnetic calorimeter (ECAL) from KLOE detector, ECAL refurbishment, transportation to FNAL, installation and commissioning at the DUNE ND cavern.
- In general, the activities at LNF of the whole KLOE-to-SAND project are followed and discussed inside the ECAL WG, including the SAND/MAGNET WG activities due to the high correlation of operation and planning of the two WGs.
- WG chairs: A. Di Domenico, D. Domenici
- Dedicated mailing list <u>DUNE-ND-SAND-ECAL@LISTSERV.FNAL.GOV</u>
- Regular weekly meeting every Monday 2:15 PM (CET) 7:15 AM (CT)
- Material presented and discussed during WG meeting available on Indico: <u>https://agenda.infn.it/category/1684/</u> (from 7-FEB to 26-APR-2022) <u>https://indico.fnal.gov/category/1413/</u> (since 2-MAY-2022)

KLOE-to-SAND: dismounting of KLOE

KLOE-to-SAND activities at LNF

Plan of operations:

- ✓ Removal of all cables and the FEE+HV racks
- ✓ Extraction of the Drift Chamber Calorimeter
- Laser tracker survey before ECAL dismounting
- Extraction of Barrel (24 modules)
 - original insertion/extraction machine completely refurbished and operational
 - platform construction is being completed
- Dismounting of EndCaps
 - original insertion/extraction/rotation machine is being refurbished and modified
- Operational test of ECAL modules
- Studies for the ECAL working point & FEE

Magnet and Yoke

- Installation of new Power Supply
- new Power supply is being purchased (CAENels)
- Power Electronics is being revamped (OCEM)
- Control system and full support for magnet test/ dismount/remount by ANSALDO ASG
- Cooling of coil
- Operational test of magnet
- in preparation
- Extraction of Magnet
- Dismounting of Iron Yoke

Packaging & Shipping at Fermilab

ECAL geometry survey

Survey performed by a specialized company:

Measured distance between:

Cloud of points (10x10 mm² pitch matrix) measured on the ECAL internal surface

Bottom plane reconstructed by accessible points on the Aluminum backplane at both module ends

Nominal value should be 230 mm (Pb+SciFi height)+ 25 mm Al plate thickness = 255 mm

SAND general/technical meeting - 14th November 2023

ECAL geometry survey

SAND general/technical meeting - 14th November 2023

ECAL geometry survey

Extraction of barrel modules: movable platform

Extraction tool fully revamped and ready

Extraction of barrel modules: rollers and pillars

12 rollers mounted on pillars will be placed as a redundant safety support for the extraction of the upper 3 modules. Built and ready to be mounted in KLOE hall.

Extraction of barrel modules: movable platform

The top part is made in three main parts

Part that supports the extraction tooling and the calorimeter modules

The two columns closest to the Calorimeter are composed by several pieces that can be removed during the modules dismount.

The lower structure is made in seven main parts: the four vertical columns; the four connecting beams.

Extraction of barrel modules: movable platform

INFN approved the platform design the 17 October

Dismounting of End-cap modules

Tools are being revamped (non-destructive structural analysis done), some parts replaced.

F. Noto – INFN LNS

Dismounting of End-cap modules

Design of supports for handling and transportation of each half End-cap completed

F. Noto – INFN LNS

Dismounting of End-cap modules

Design of supports for handling and transportation of each half End-cap completed

Tools ready and start dismounting End-Cap modules foreseen by mid-April 2024

F. Noto – INFN LNS

ECAL module refurbishment and test

DUNE

n.5 A8030P boards 48 ch. 3 kV/1 mA n.1 SY4527B mainframe n. 1 A2551 board 8 V / 12 A (to be purchsed)

۲

SAND general/technical meeting - 14

ECAL module refurbishment and test

Fig. 4. Exploded view of the PM box.

ECAL module refurbishment and test

Power Unit on blanket order INFN-CAEN

8 TDK-Lambda Genesys+ (375A, 20V) in parallel with CAEN-REGUL8OR regulation unit customized with our interlock interface (all USA standard compliant)

Quench Detector	Dump resistor Filter	Bus bars Contactors	Power Unit Free wheels diodes											

Old PS dismounted from Kloe platform and delivered to OCEM for inspections of components possibly saved

OCEM could also provide its own PU but would not be part of a blanket order.

We asked a PU quotation for a comparison with CAENels

KLOE PS Dump resistor and contactors

KLOE PS delivered to OCEM

Coil cool-down

Before dismounting and shipping (but after new PS installation) an operational test of the magnet is foreseen to test integration of all parts (PS, Quench Detector, Control System, Software Interface)

Coil extraction and transportation

Magnet extraction procedure

A. Saputi – INFN LNS

Coil extraction and transportation

Main services, structures and tools for extraction

Crane = 22 t + 22 t

Extraction/Insertion Tool

Loading Dock

Trolley System

Cradle

Lugs

The existing loading dock will be refurbished and enlarged on purpose

A. Saputi – INFN LNS

Coil extraction and transportation

Main services, structures and tools for extraction

All workshop drawings are ready
Technical specification is ready

- All workshop drawings are ready
 Technical specification is ready
 Holes centre spacing to be checked

Reverse engineering of vessel Design and construction of handling and transportation tools Certification EU and US compliant

A. Saputi – INFN LNS

				20	022					2023							2024												2025															
	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Safety Operation Documentation																																												
KLOE Hall Housekeeping																																												
Unplugging and Cables removal																																												
DC Tooling Draw and Construction																																												
Drift Chameber Extraction																																												
ECAL Barrel Tooling Preparation																																												
ECAL Barrel Extraction																																												
ECAL Module Test																																												
ECAL EndCaps Tooling Preparation																																												
ECAL EndCaps Dismounting																																												
Coil PS and Cryo interface procurement																																												
Coil PS Intallation																																												
Coil Test																																												
Coil Tooling Preparation																																												
Coil Extraction																																												
Yoke Dismounting																																												
Shipping Preparation																																												
Shipping																																												

ND-hall availability: 2028

Studies for the optimization of the ECAL working point and FEE

A. Di Domenico, V. Di Silvestre, P. Gauzzi, D. Truncali - INFN-RM1 A. Balla - INFN-LNF

Np.e. distributions

PE distribution

Np.e. distributions

PE distribution

Cell occupancy plots and hit probability

Beam power 1.2 MW 7.5 x 10^{13} protons extracted every 1.2 s at 120 GeV 1.1 x 10^{21} pot/year

Spill time structure

- 9.6 µs per spill
- 6 batches, 84 bunches/batch
- 2 empty bunches
- 1 bunch: Gaus(σ = 1.5 ns)
- Δt bunches = 19 ns

Event rates expected in SAND

- ~ 84 interactions/spill
- ≲1 interaction/spill in the SAND fiducial volume

(negligible rock muons and cavern background assumed)

Pile-up probability

Pile-up probability

PMT signal and discriminator threshold in KLOE

CUNE

Test of preamp saturation

In this specific case (negligible cable length) we expect: $V_{dis}(max) = V_{preamp}(max) \cdot 0.5 = 2.35 V$

Assuming to increase $V_{preamp}(max)$ by 15% while keeping linearity at an acceptable level, e.g. 1% (feasible - see next slide), we get:

```
V_{preamp}(max) = 5.4 V
V_{dis}(max) = V_{preamp}(max) \cdot 0.5 = 2.7 V
```

Preamp linearity test and saturation threshold

Linearity test

Choice of the dynamic range

Assuming:

- to increase $V_{preamp}(max)$ by 15% => $V_{preamp}(max)$ = 5.4 V
- $(N_{pe} G_{PM})(max) = 95 \cdot 10^7$
- $V_{dis}(max) = V_{preamp}(max) \cdot 0.5 \cdot C_{ATT} = 2.0 V$ (12m long cable attenuation: $C_{ATT} = 0.74$)
- to have a very low noise environment as in KLOE => lowering (halving) the minimum discriminator/digitizer threshold to V_{TH}= 2.5 mV

	G_{PM}	G_{tot}	$N_{pe}(\max)$	signal	$N_{pe}(\min)$	MeV
$(\times 10^5)$		$(\times 10^{6})$		amplitude	$V_{TH} = 2.5 \text{ mV}$	at module center
				(mV/pe)		
	4.8	1.2	~ 2000	1.0	~ 3	3.0
	6.4	1.6	~ 1500	1.3	~ 2	2.0
	9.5	2.4	~ 1000	2.0	~ 1	1.0

 Different dynamic ranges can be implemented changing G_{PM} => the final choice should be a compromise between an affordable level of events with energy saturated cells, depending on N_{pe}(max), and an acceptable neutron detection efficiency, depending on N_{pe}(min).

Constraints on signal dynamic range see previous slides

Two possible read-out schemes:

CAEN:

possible ready-to-use solution maintaining KLOE energy and time performance

Choice of FEE for SAND/ECAL

Digitizer solution:

 $V_{signal}(max) = 2 V$ $V_{signal}(min) = O(0.1) mV$ => no problems to set V_{TH} and $V_{signal}(max)$ to match $V_{dis}(max)$

Best choice, high cost:

1 GS/s digitizer => 1 ns: 4-5 time measurements on the rising edge of the 14 ns base signal to preserve time resolution

Alternative lower cost choice:

Using a lower cost digitizer, 125 or 250 MS/s => 8 or 4 ns, requires a shaper to stretch the signal.

In principle this solution does not worsen the time resolution, but requires to keep the pileup under control, as confirmed by MC (or to detect it from the signal shape).

A 500 MS/s digitizer (14 bit) => 2 ns might not need to stretch the signal (use of ad-hoc correction algorithms and calibration for measuring the time) => under test at CAEN.

Digital CFD with interpolation

FERS by CAEN

Fig. 2.5: Walk vs ToT

Rise = 1.1 ns, Fall = 1 ns

Fig. 2.4: Walk vs Amplitude

Test done by CAEN:

amplitude and walk reconstructed with To Walk vs ToT

38

a more conventional approach splitting the signal:

Note: some stages may be folded into a single active component

N. Tosi – INFN BO

Conclusions

Advances in all KLOE-to-SAND activities:

- movable platform for the barrel modules extraction is being built
- design of mechanical tools for the End-cap dismounting ready
- design for the dismounting of the magnet coil ~ready
- the magnet test is being prepared

Studies for the optimization of the working point of the SAND calorimeter read-out electronics have been performed.

The dynamic range and pile-up of the signals have been studied with MC.

PMT preamplifiers tested for linearity and well compatible with needed dynamic range and proposed FEE solutions, with the additional advantage of a lower gain and HV level, beneficial for their lifetime.

Possible solutions for the FEE that could constitute a good compromise between cost and performance are being investigated in collaboration with CAEN.