

Recent Achievements at the ~MeV-scale in the MicroBooNE Experiment

Will Foreman (IIT) on behalf of the MicroBooNE Collaboration

Fermilab Wine and Cheese December 15, 2023

A brief visual tour of energy scales...

A brief visual tour of energy scales...

Neutrino Physics Refresher

Neutrino Physics Refresher

Neutrino Physics Refresher

neutrino oscillations BSM searches astrophysical neutrinos 18 m 17 kton module 19 m 66 m (10 kton active volume) Sanford Underground Fermilab **Research Facility** 800 miles/1300 km NEUTRINO PRODUCTION L UNDERGROUND PARTICLE PARTICLE DETECTOR DETECTOR

- neutrino oscillations
- BSM searches
- astrophysical neutrinos
- Measure δ_{CP} , improve precision on θ_{13} , and determine sign on Δm_{13}^2 (mass ordering)

Primary energy range: ~100s of MeV to ~10 GeV

neutrino oscillations

1 MeV

- BSM searches
 - astrophysical neutrinos

Proton decay, neutron-antineutron oscillations, heavy sterile v, dark v...

Solar neutrinos in DUNE

DUNE could see > 10⁵ signal events (E>5 MeV) over its lifetime, enabling world-leading measurements of θ_{12} , Δm_{12}^2 , and solar neutrino fluxes

Supernova neutrinos in DUNE

A galactic supernova should happen every ~10-50 years.

Neutrino signal = unique probe into astrophysics at core of explosion

This would be a groundbreaking achievement for the DUNE detector!

Mass ordering determination

Supernova Neutrinos at the DUNE Experiment 2020 J. Phys: Conf Ser 1342

Past MeV-Scale Demonstrations in LArTPCs

ArgoNeuT

Demonstration of MeV-scale physics in liquid argon time projection chambers using ArgoNeuT

R. Acciarri,¹ C. Adams,² J. Asaadi,³ B. Baller,¹ T. Bolton,⁴ C. Bromberg,⁵ F. Cavanna,¹ E. Church,⁶ D. Edmunds,⁵ A. Ereditato,⁷ S. Farooq,⁴ A. Ferrari,⁸ R. S. Fitzpatrick,⁹ B. Fleming,² A. Hackenburg,² G. Horton-Smith,⁴ C. James,¹ K. Lang,¹⁰ M. Lantz,¹¹ I. Lepetic,^{12,*} B. R. Littlejohn,^{12,+} X. Luo,² R. Mehdiyev,¹⁰ B. Page,⁵ O. Palamara,¹ B. Rebel,¹ P. R. Sala,¹³ G. Scanavini,² A. Schukraft,¹ G. Smirnov,⁸ M. Soderberg,¹⁴ J. Spitz,⁹ A. M. Szelc,¹⁵ M. Weber,⁷ W. Wu,¹ T. Yang,¹ and G. P. Zeller¹

(ArgoNeuT Collaboration)

Phys. Rev. D 99, 012002 (2019)

12/15/2023

Past MeV-Scale Demonstrations in LArTPCs

ArgoNeuT

Improved Limits on Millicharged Particles Using the ArgoNeuT Experiment at Fermilab

R. Acciarri,¹ C. Adams,² J. Asaadi,³ B. Baller,¹ T. Bolton,⁴ C. Bromberg,⁵ F. Cavanna,¹ D. Edmunds,⁵ R. S. Fitzpatrick,⁶ B. Fleming,⁷ R. Harnik,¹ C. James,¹ I. Lepetic,^{8,*} B. R. Littlejohn,⁸ Z. Liu,⁹ X. Luo,¹⁰ O. Palamara,^{1,†} G. Scanavini,⁷ M. Soderberg,¹¹ J. Spitz,⁶ A. M. Szelc,¹² W. Wu,¹ and T. Yang¹

(ArgoNeuT Collaboration)

Remaining Challenges

- Successful demonstrations in smaller LArTPCs... but can we do the same in large ones?
 - Lowering thresholds
 - Precise energy reconstruction
 - Controlling low-energy backgrounds

Critical for maximizing DUNE's physics potential

Remaining Challenges

- Successful demonstrations in smaller LArTPCs... but can we do the same in large ones?
 - Lowering thresholds
 - Precise energy reconstruction
 - Controlling low-energy backgrounds

Remaining Challenges

- Successful demonstrations in smaller LArTPCs... but can we do the same in large ones?
 - Lowering thresholds
 - Precise energy reconstruction
 - Controlling low-energy backgrounds

Critical for maximizing DUNE's physics potential

Remaining Challenges Opportunities?

Radon in dark matter experiments

- Existing methods of radio-purification in LAr:
 - rigorous material screening
 - outgassing campaigns
 - specialized systems for filtering Rn from gaseous argon
- DUNE aims to achieve < 1 mBq/kg to accomplish the goals laid out in previous slides
- How will we accomplish this?
 - Filtration in the gaseous phase will be more challenging at large scale

What does MicroBooNE have to say on this?

I will now present some recent results from MicroBooNE's MeV-scale program that addresses challenges related to:

- Reconstruction at the MeV-scale in large LArTPCs
- Radon mitigation
- MeV and *sub*-MeV calorimetry

The MicroBooNE Detector

2017 JINST 12 P02017

 $\sim 10m \times 2.5m \times 2.3m$

12/15/2023

25

Clusters of hits from different wireplanes are matched in time to form 3D images

Long/extended patterns = less ambiguous matching

For individual hits or small clusters of hits from MeV-scale depositions, avoiding <u>false</u> <u>matches</u> becomes a challenge!

MICROBOONE-NOTE-1076-PUB (2020) MeV-scale Physics in MicroBooNE MICROBOONE-NOTE 1076-PUB The MicroBooNE Collaboration MICROBOONE-NOTE-1050-PUB (2018) Study of Reconstructed ³⁹Ar Beta Decays at the MicroBooNE Detector The MicroBooNE Collaboration*

MeV-scale reconstruction in MicroBooNE

- Techniques pioneered in ArgoNeuT have been further developed in MicroBooNE
- Dedicated algorithm class has since been written encompassing these tools → flexible integration into other reco & analysis workflows
 - Millicharged particle searches
 - v NC1p selection background mitigation
 - Neutron tagging
 - Radiogenic calibrations

12/15/2023

1.

2.

3.

4.

5.

31

Blip reconstruction in a nut-shell

Plane B

Ambient blips in MicroBooNE data

12/15/2023

Radon studies in MicroBooNE

- During its 2021 R&D run, MicroBooNE explored radon's calibration potential by doping Rn into the active volume of LAr
 - 222-Rn has a 3.8 day half-life
 → mixes throughout active volume
 - **214-Po has a short 164µs half-life** → can tag the associated 214-Bi β

²¹⁴Bi → ²¹⁴Po Decay Tagging

²¹⁴Bi → ²¹⁴Po Decay Tagging

²¹⁴Bi → ²¹⁴Po Decay Tagging

214Po
$$\alpha$$
 (7.7 MeV)
 $T_{1/2} = 164 \ \mu s$
214Bi β (Q = 3.3 MeV)

Heavily ionizing alpha dE/dx ~ O(100) MeV/cm in ionization clouds *this* dense, extreme "charge quenching" occurs (e⁻ -Ar⁺ recombination + collisional effects)

 \rightarrow Signal is fainter, < ~4000 e⁻

This **7.7 MeV** *α* ends up only depositing as much charge as a ~**150-200 keV electron!** ('*Electron-equivalent energy*' = *MeVee, KeVee*)

Lowering the energy thresholds

For this analysis, settings in the signal processing and hit-finding were tweaked to *improve* our energy sensitivity, **especially on the collection plane**.

Doping radon into MicroBooNE

Doping radon into MicroBooNE

Bi-Po candidate rate: full filters

Usual filter configuration

Bi-Po candidate rate: *filter bypass*

> 99.9997% of Rn removed by 77L filter

"Filter bypass"

Radiological survey

Confirmed accumulation of radon in copper filter

Implications

Prepared for submissio	JINST 17 P11022 (2022)	
Observation of Liquid Argon	of Radon Mitigation in Micro Filtration System	BooNE by a
MicroBooNE Col	laboration	

- This result was surprising!
 - Our single-phase liquid filtration designed to remove *electronegative impurities* – seems to also remove radon
- Promising indications for DUNE

Remaining questions...

- What *is* the ambient Rn rate?
- Background rate from previous study would be equivalent to ~20 mBq/kg
- Higher purity selection is needed to resolve this

arXiv:2307.03102

Follow-up study was performed with improved signal selection:

- Require plane-matched β
- Fiducialization cuts
- Energy cut of $E_{\beta} > 0.5$ MeV
- Additional cuts on α blip size

arXiv:2307.03102

²¹⁴Bi
$$\rightarrow$$
 ²¹⁴Po + β + N γ

BiPo signal can be faked by other beta-emitting isotope decays

arXiv:2307.03102

arXiv:2307.03102

time-ticks

Background subtraction and ΔT template fitting

Background subtraction and ΔT template fitting

Results on radon-doped data

Previous study's background rate (~5.5 candidates/evd) has been successfully removed

Calorimetric validation: β_{Bi}

Same BG subtraction applied to β energy spectrum

Calorimetric validation: α_{Po}

... and same for the α_{Po} energy spectrum (large uncertainties in charge yield/quenching)

MC energy resolution

MC electron resolution:

- 10% at 1 MeV
- 8% at 5 MeV

DUNE requirements for:

- SNe v: ~10-20% Euro. Phys. J. 81, 423 (2021)
- Solar v: ~7% for > 5 MeV <u>Phys. Rev. Lett. 123, 131803 (2019)</u>

Results from standard data-taking conditions

Results from standard data-taking conditions

Results from standard data-taking conditions

<u>arXiv:2307.03102 (2023)</u> – under review by PRD Measurement of ambient radon daughter decay rates and energy spectra in liquid argon using the MicroBooNE detector P. Abratenko,³⁵ O. Alterkait,³⁵ D. Andrade Aldana,¹⁵ L. Arellano,²⁰ J. Asaadi,³⁴ A. Ashkenazi,³² S. Balasubramanian,¹² B. Baller,¹² G. Barr,²⁵ D. Barrow,²⁵ J. Barrow,^{21,32} V. Basque,¹² O. Benevides Rodrigues,¹⁵

- Combined with 'radon mitigation' result, this is a resounding indication that single-phase LArTPC liquid filtration can achieve high radon radiopurity
 - Comfortably within DUNE's requirements
- Existing readout / reconstruction sufficient for DUNE to achieve baseline goals
 - Of course, this may be a little harder in DUNE due to its larger size...

- MeV-scale reconstruction is the 'next frontier' in v LArTPC physics
- MicroBooNE has used its wellunderstood detector to demonstrate these capabilities
 - Novel measurements for a large LArTPC
 - Results help bridge the gap between dark matter and vLArTPC worlds

Thank you!

and thanks to the Fermilab *New Initiatives* program for funding the radon-doping R&D!

Advantage of mm-scale tracking + calorimetry? $\rightarrow e/\gamma$ shower separation

Photo-ionizing dopants

Improving LArTPC Performance with Photo-Ionizing Dopants, Joseph Zennamo

Solar neutrinos in DUNE

DUNE as the Next-Generation Solar Neutrino Experiment Phys. Rev. Lett. 123, 131803

 Δm_{12}^2 probed by day-night flux asymmetry $A_{D/N} = (D-N)/\frac{1}{2}(D+N)$

Can break degeneracy between θ_{12} and $\phi(^{8}\text{Bi})$ by measuring two interaction channels via crude angular cuts: $\nu_{e} + {}^{40}\text{Ar} \rightarrow e^{-} + {}^{40}\text{K}^{*} \longrightarrow R_{\text{Ar}} \propto \phi(^{8}\text{B}) \times \sin^{2}\theta_{12}$ $\nu_{e,\mu,\tau} + e^{-} \rightarrow \nu_{e,\mu,\tau} + e^{-} \longrightarrow R_{e} \propto \phi(^{8}\text{B}) \times (\sin^{2}\theta_{12} + \frac{1}{6}\cos^{2}\theta_{12})$

FIG. 3. Estimated precision of the ν_e and $\nu_{\mu,\tau}$ content of the ⁸B flux, present (SNO [5, 53]) and future (DUNE), with the ellipse for DUNE alone. Based on a simplified analysis, with only statistical uncertainties (1σ) but assuming 2 d.o.f., and with SNO fluxes slightly rescaled to match their global-fit ⁸B flux. Note small axis ranges. Full analysis in text.

Energy resolution improvements in LAr

TABLE I. Detection thresholds according to the DUNE CDR document [5]. The values given correspond to the kinetic energy of each particle.

	р	π^{\pm}	γ	μ	е	others
Thresholds (MeV)	50	100	30	30	30	50

- (1) *CDR thresholds*: Any particle created below the thresholds listed in Table I is lost.
- (2) *Total charge calorimetry*: Thresholds are set to zero and no information about the hadronic system other than the total ionization charge is used.
- (3) *Detailed event reconstruction*: Thresholds are low and recombination corrections are applied to each particle in the event individually.

FIG. 14. Simulations of reconstructed neutrino energies for $E_{\nu} = 3 \text{ GeV}$ true energy in the CC $\nu_e + {}^{40}\text{Ar}$ scattering process. The histograms correspond to three different sets of assumptions, as described in the text.

Phys. Rev. D 99, 036009 (2019)

Traditional reconstruction

- Wire signals are noise-filtered and processed with deconvolution algorithms
- ADC thresholded hit-finding via Gaussian fits to pulses
- Advantages:
 - Software infrastructure in place in LArSoft & demonstrated with published results
 - Based on 'first-principles', no need to train a network
- Disadvantages:
 - Lowering thresholds is challenging
 - Limited by noise floor

Yes, it's time for *that* diagram...

Liquid argon time projection chamber (LArTPC)

✓ Scalable

 ✓ Prolific scintillator

Yes, it's time for that diagram...

Liquid argon time projection chamber (LArTPC)

✓ Scalable

✓ Prolific scintillator

 ✓ Millimeterscale 3D images

✓ Calorimetry

Ion mobility in LAr

Some fraction of isotopes are positive ions \rightarrow drift toward cathode at very slow speeds

Phys Rev C 92, 045504 Results from LXe in EXO-200		
222Rn → 218Po⁺ v _d ~0.3 cm² / (kV s)	$f_{\alpha} = 50.3 \pm 3.0\%)$	
214Pb → 214Bi+	$f_\beta=76.5\pm5.7\%$	

Implies that measured Bi→Po rate can't be directly translated to a ²²²Rn rate, as some isotopes will have drifted and plated onto cathode

Figure 8. (Color online) Scatter plot of ^{218}Po drift distance versus time between the ^{222}Rn and ^{218}Po decays. Displacement (Δz) is defined as positive when movement is towards the cathode.

µBooNE

FIG. 9. The background-subtracted and fitted ΔT distributions for the Rn-doping data for a period when the filter was bypassed (blue) and the preceding period where the full filtration system was employed (black).

- Looked at ratio of dE/dx for segments of ACP tracks near and far from the wire planes
- Confirmed average ~8 ms lifetime (weighted by β candidates over time), consistent with previous estimate from scaling the Bi214 beta spectrum
 - Removes an 'unknown' in the energy scale puzzle

Time period [hrs]	Far/near dEdx ratio	Equivalent lifetime [ms]
0-5	1.01(2)	> 180
5-10	0.940(8)	29 +/- 12
10-15	0.902(8)	18 +/- 3
15-20	0.855(11)	12 +/- 2
20-25	0.828(12)	9.6 +/- 1.8
25-30	0.820(9)	9.2 +/- 0.5
30-35	0.776(6)	7.2 +/- 0.5
35-40	0.758(7)	6.6 +/- 0.6
40-45	0.735(7)	5.9 +/- 0.4

Charge vs energy for electrons

MicroBooNE (<u>arXiv:1704.02927</u>) and LArIAT (<u>arXiv:1909.07920</u>)

- Analyses of Michel electron showers
- For blips, assumed constant dE/dx (i.e., constant recombination)

ArgoNeuT (arXiv:1810.06502)

- Nuclear de-excitation γ analysis
- Used NIST data on low-E electrons, together with recombination, to directly relate measured Q to energy

µBoo

Energy spectra backgrounds

Simulated energy spectra

Calorimetric validation: α_{Po}

Using NEST-parameterized alpha charge-yield (QY) model https://zenodo.org/record/7577399

Figure 9: Charge yield model comparison with data from Po-210 and Cf-252

Monte Carlo Efficiency

α QY: +/-20% **Systematic** Uncertainty D_1 : ± 1 σ , D_T : ± 30% Alpha QY $\pm 43\%$ Electron diffusion +26%, -17% All charge scaled +/-5% +15%Energy scale **Recombination modeling** $\pm 1.9\%$ 'Birks' model, and enhanced Total +52%, -49% recombination fluctuations

Final efficiency for BiPo rate measurement: $\epsilon = (6 \pm 3) \%$

Contributions to efficiency

	Relative probability (NEST)	Relative probability (LArG4)
Volume remaining after 2D cosmic track-masking	~86%	same
Bi214 beta decays producing collection plane hits*	~51%	same
Bi214 blips plane-matched	~62%	same
Po214 alphas producing collection plane hits	~22%	~43%
Total	~6%	~12%

* Using 'low-threshold' reconstruction

CNN-based ROI finder in ArgoNeuT

JINST 17 (2022) P01018

Figure 7. 1D-CNN scores for simulated noise and signal wavefoms in the induction plane (right) and the collection plane (left).

Figure 8. Event display after applying the 1D-CNN ROI finder for the event shown in Figure 1 and Figure 2.

BlipReco code structure

ubreco/BlipReco (3.3 MB total)

els.txt cl module.cc e.cc e.cc	Uti Blip Blip clas clas CMak Data	ls Utils.cc DUtils.h ses_def.xml ses.h seLists.txt Types.h	
pes.h ID isValid TPC NPlanes MaxWireSpan Charge Energy EnergyESTAR Time ProxTrkDist ProxTrkDist ProxTrkID inCylinder Position; SigmaYZ dX dYZ Vcluster-specif tClust clusters -matched energy ueBlip truth;	<pre>= -9; = false; = -9; = -9; = -9; = -999; = -999; = -999; = -9; = -9; = false; = -9; = -9; ic information [KNplanes]; deposition</pre>	<pre>// Blip ID / index // Blip passes basic checks // TPC // Num. matched planes // Maximum span of wires on any plane cluster // Charge on calorimetry plane // Energy (const dE/dx, fcl-configurable) // Energy (ESTAR method from ArgoNeuT) // Dift time [ticks] // Distance to cloest track // ID of closest track // ID of closest track // IS it in a cone/cylinder region? // 3D position TVector3 // Uncertainty in YZ intersect [cm] // Equivalent length along drift direction [c // Approximate length scale in YZ space [cm] //</pre>	m]
	els.txt ccl module.cc e.cc pes.h o { ID isValid TPC NPlanes MaxWireSpan Charge Energy EnergyEsTAR Time ProxTrkDist ProxTrkDist ProxTrkD inCylinder Position; SigmaYZ dx dyZ //cluster-specif tclust clusters -matched energy ueBlip truth; type getter fun () { return Pos () { return Pos	<pre>els.txt Uti cl podule.cc Blip Blip class e.cc Cd class class</pre>	<pre>els.txt cl bodule.cc BlipUtils.cc BlipUtils.h classes_def.xml classes.h Classes.h CMakeLists.txt DataTypes.h pes.h of</pre>

"Blip" data object prototype (C++ struct)

- Encodes XYZ, charge, & energy of 3D blips
- Includes distance to nearest track & track conecylinder region flag
- Truth-matching information also encoded

DataTypes.h

// True energy depositions			
struct True	Blip {		
int	ID	= - <mark>9</mark> ;	// unique blip ID
int	TPC	= -9;	// TPC ID
float	Time	= -999e9;	// time [us]
float	Energy	= 0;	// energy dep [MeV]
int	DepElectrons	= 0;	<pre>// deposited electrons</pre>
int	NumElectrons	= 0;	<pre>// electrons reaching wires</pre>
float	DriftTime	= - <mark>9</mark> ;	// drift time [us]
int	LeadG4ID	= - <mark>9</mark> ;	// lead G4 track ID
int	LeadG4Index	= - <mark>9</mark> ;	// lead G4 track index
int	LeadG4PDG	= -9;	// lead G4 PDG
float	LeadCharge	= -9;	// lead G4 charge dep
TVector3	Position;		// XYZ position