Simulation Updates for ProtoDUNE-I & ProtoDUNE-II

Dr. Gregory Michna Dr. Stephen Gent Vishnu Syd Pfeiffer Sahil Sharma

Completed Work

- ProtoDUNE single-phase detectors have been modeled with computational fluid dynamics (CFD) simulations to predict flow characteristics, offer design insights, and validate the methods for simulating future studies.
- A series of parametric studies were conducted on the ProtoDUNE's liquid region by varying <u>geometric features</u> and <u>heat sources</u>.
- The results of the ProtoDUNE-I SP liquid region have been compared with temperature sensor data from the physical system.

Baseline Simulation Conditions

Initial Parameters	Value	Units
Inlet Temperature #1	88.519	[K]
Inlet Temperature #2	88.534	[K]
Inlet Temperature #3	88.503	[K]
Inlet Temperature #4	88.520	[K]
Electronic Heat Load	336	[W]
Liquid Argon Height	7.4	[m]
Room Temperature	26.1	[°C]
(in K)	299.25	[K]
LAr Mass Flow Rate	1.66801	[kg/s]

Cable Tray

Parametric Study

Parameter	Variation(s)				
Inlet Temperature	±0.1	±0.2		±0.3	[K]
Electronic Heat	±10	±20		±30	[%]
LAr Height	±0.05			[m]	
Room Temperature	±5			[°C]	
LAr Mass Flow Rate	±5	±10		±15	[%]
Electronic Heat Load	1080				[W]

For Hawaii probe, we are looking at bottom 19 sensors

For Valencia probe, we are looking at bottom 46 sensors

ProtoDUNE-II Complete 3D Model

Source: https://edms.cern.ch/project/CERN-0000209067

Position of Valencia & Hawaii probes

Preliminary Results for Hawaii Profile

Since CE are at bottom on the APA which is close to **Hawaii probe** a bump in temperature around 0.8 [m] is observed.

Preliminary Results for Valencia Profile

On the other APA which is close to **Valencia probe**, CE are at top, so we observe a linear increase in temperature with height with maximum temperature around 7.1 [m].

Updates to ProtoDUNE- II since last results:

- New geometries added (Cable trays, Valencia probe)
- Pressure coefficient study for porous regions (APA, FC & GP) with new thickness completed and implemented in the simulation model.
- Mesh refinement for porous planes and insulation.
- Cold electronics heat source value of 360W for each CE (total: 720W)

Far Detector Model simplification:

Far Detector (FD-HD) Model simplification.

- Referring to CAD files and Technical Design reports for dimensional analysis
- Referring to Previous study done on LBNF at SDSU (2017-18) for model simplification methodology and boundary conditions.

Objective for FD-HD study

- To use temperature measurements to constraint CFD and predict purity, and thus electron lifetime, everywhere in the cryostat
- Simulate TMS sensor distribution and mock data for a given TMS resolution
- Compare several CFD simulations with mock data and produce X^2 plots for different TMS resolutions
 - Vary several CFD parameters affecting temperature (as in ProtoDUNE-SP)
 - Find error on impurity prediction by looking at CFD impurity predictions associated to the constrained temperature maps

Far Detector (FD) cont.

Technical Design Report 1

Referenced dimensions: Anode Plane Assembly (APA) Cathode Plane Assembly (CPA) **Table 3.1**. Key parameters for a 10 kt FD SP module.

Item	Quantity
TPC size	$12.0 \mathrm{m} \times 14.0 \mathrm{m} \times 58.2 \mathrm{m}$
Nominal fiducial mass	10 kt
APA size	$6 \mathrm{m} \times 2.3 \mathrm{m}$
CPA size	$1.2 \mathrm{m} \times 4 \mathrm{m}$
Number of APAs	150
Number of CPAs	300
Number of X-ARAPUCA PD bars	1500
X-ARAPUCA PD bar size	$209 \mathrm{cm} \times 12 \mathrm{cm} \times 2 \mathrm{cm}$
Design voltage	-180 kV
Design drift field	500 V/cm
Drift length	3.5 m
Drift speed	1.6 mm/µs

Far Detector (FD) cont.

Technical Design Report 4

Table 3.3. HV field cage components.

Referenced dimensions: Field Cage (FC) Ground Plane (GP)	Component	Count	Length (z)	Width (x)	Height (y)	Submodules	Grand Total
	Top FC modules	$100 (4 \times 25)$	2.3 m	3.5 m	-	-	100
	Bottom FC modules	$100 (4 \times 25)$	2.3 m	3.5 m	-	-	100
	Profiles per module (all top and bottom module types)	57	2.3 m	-	-	-	11400
	GP modules per top or bottom FC module	5	2.3 m	0.7 m	-	-	1000
	Endwall FC plane	2	-	14.4 m	12 m	4	2
	Endwall FC modules per endwall FC	32	-	3.5 m	1.5 m	-	64
	Profiles per endwall FC module	57	-	-	1.5 m	-	3648