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Lots of Evidence 
for Dark Matter

2



… but what is it?

3image credit: Sandbox Studio, Chicago



Can we be agnostic, and still learn 
something about DM?
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Eeny… Meeny…

Miny… Moe?

image credit: Sandbox Studio, Chicago
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Dark Matter and the Standard Model

Standard Model 
Sector

Dark Sector

e, u, d, ν . . .

Dark Sector

Dark Matter …χ

Nongravitational interaction between Standard Model and DM: 
experimentally testable and theoretically well-motivated.
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Dark Matter Annihilation
DM

DM

Motivated by ideas for dark matter production in the early universe.

Jungman+ hep-ph/9506380
SM

SM

Ωχh2 = 0.12
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Dark Matter Decay

DM

DM is cosmologically stable, but small couplings to the SM  
can lead to decays if DM not protected by symmetry.

SM

SM

QCD Axion 
Axion-like Particles

Sterile Neutrinos



How do we look for 
the SM products?

8
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Cosmology

Cosmological probes highly effective: high densities, long duration, 
pristine environments, precision measurements. 

Cosmic Microwave 
Background (CMB) 
Power Spectrum

21-cm Cosmology

CMB Blackbody Spectrum

Caputo, HL, Mishra-Sharma & Ruderman 2002.05165

Big Bang Nucleosynthesis

Astronomy: Roen Kelly

REACH 
Collaboration



Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 10

Energy Injection

χ

e+, μ+, γ, ⋯

e−, μ−, γ, ⋯
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χ

e+, μ+, γ, ⋯

e−, μ−, γ, ⋯

Energy Deposition

H

Ionization
H

Excitation

Heating Inverse 
Compton Scattering

CMB

Low-Energy 
Photons



How does this affect 
the Universe after 
recombination?
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Standard Histories
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Standard histories very well-understood before star formation: 
Believed to be understood at 0.1% precision. 
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Recombination

Photons with energy > 13.6 eV are abundant:  
hydrogen atoms are ionized. 

13.6 eV
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Recombination

Universe expands, cools: protons and electrons recombines, 
Universe becomes neutral and transparent.  
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Compton Scattering
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Compton scattering between free electrons and CMB photons keep 
matter and the CMB in thermal contact until 150.z ∼
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Redshifting
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Be
gi

ns
∝

(1
+ z)

2

∝
(1

+ z)
2

∝ (1 + z)

After decoupling from photons, 
redshifts as nonrelativistic 
matter until star formation.  

Simple evolution!
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χ

e+, μ+, γ, ⋯

e−, μ−, γ, ⋯

What Does Energy Deposition do?

H

Ionization
H

Excitation

Heating Inverse 
Compton Scattering

CMB

Low-Energy 
Photons



Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 19

github.com/hongwanliu/DarkHistory

Calculates ionization history, temperature history  
and photon spectrum given an exotic source.

HL, Ridgway & Slatyer 1904.09296, HL, W. Qin, Ridgway & Slatyer 2303.07366
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Signals in Data?

20

HL, Ridgway & Slatyer 1904.09296, HL, W. Qin, Ridgway & Slatyer 2303.07366
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Increased Ionization

More free electrons means 
photons scatter more, 

affecting the CMB  
power spectrum.

aDM → γγ

ℒ ⊃ −
gaγγ

4
aFμνF̃μν

HL, W. Qin, Ridgway & Slatyer 2303.07370
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Increased Heating - Lyα

Intergalactic medium temperature known through Lyman-  
forest data. Strong constraints on sub-GeV DM decay.

α
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HL, W. Qin, Ridgway & Slatyer 2008.01084

Different 
reionization 
scenarios



Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 23

HL & Slatyer 1803.09739, Y. Sun, Foster, HL, Muñoz, Slatyer 2312.11608

21-cm will be very sensitive to heating of baryons  
during the cosmic dark ages ( ).6 ≲ z ≲ 30

Increased Heating - 21cm
Power Spectrum

Global 
Signal
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CMB Blackbody Distortions

Powerful probe for photons oscillating into other states.  
Useful for DM decay with next generation experiments (PIXIE).

Caputo, HL, Mishra-Sharma & Ruderman 2002.05165,  HL, W. Qin, Ridgway & Slatyer 2303.07370

γ → A′ 

1 in 106  
distortion
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Big Shift in Temperature & Ionization

25
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Does an orders-of-magnitude shift affect how the first stars form?



Dark matter  
can delay or 
accelerate 

star formation. 

W. Qin, J. Muñoz, HL & T. Slatyer, 2308.12992
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Star Formation

Schematically, stars form if a stellar mass, low density gas cloud 
can gravitationally collapse successfully.

M⋆, Ti

M⋆, T⋆

Ri

R⋆



Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 28

Gravity vs. Pressure

But the pressure in a gas cloud counteracts gravity.  
Gas cloud must be sufficiently cold. 

M⋆, Ti

Ri

M⋆, T > Ti
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Gas Temperature in a Halo

NTh ∼
GM2

h

Rh
, N ∼

Mh

mH

Mh, Th

Rh
Th ∼ 3 × 103 K ( Mh

106M⊙ )
2/3

( ρh

200ρcrit(z = 20) )
1/3

Gas in halos expected to be roughly . ∼ 103 K

potential energy ~ kinetic energy
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Initial Temperature for Collapse

Initial temperature for successful collapse is much smaller than  
typical temperature in halo ( ). ∼ 103 K

M⋆, Ti

Ri NTi ≪
GM2

⋆

Ri
, N ∼

M⋆

mH
, Ri ∼ (M⋆/ρh)1/3

Ti ≪ 30 K ( M⋆

103M⊙ )
2/3

( ρh

200ρcrit(z = 20) )
1/3

potential energy ~ kinetic energy 
when stable
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Cooling

… or the gas cloud must be able to cool by emitting radiation.

M⋆, Ti

Ri
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Atomic Cooling

H atomic cooling inefficient well below  
(no free electrons for bremsstrahlung). 

T ≪ 10.2 eV = 105 K

H 10.2 eV 
photon

HH

H

⋮

n = 1

n = 2

n = 3

collisional 
excitation

photon 
emitted
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Gas Temperature in a Halo

NTh ∼
GM2

h

Rh
, N ∼

Mh

mH

Mh, Th

Rh
Th ∼ 3 × 103 K ( Mh

106M⊙ )
2/3

( ρh

200ρcrit(z = 20) )
1/3

Atomic cooling (and bremsstrahlung) cannot cool gas  
below  in typical halos.∼ 103 K

potential energy ~ kinetic energy
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Molecular Cooling

Microwave 
Photon

⋮

ℓ = 1

ℓ = 2

ℓ = 3

collisional 
excitation

photon 
emitted

H2

H2

H2

H2
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Molecular Cooling

Cooling from collisional excitation of hydrogen molecules 
crucial for star formation. How does DM affect  formation?H2

Microwave 
Photon

⋮

ℓ = 1

ℓ = 2

ℓ = 3

collisional 
excitation

photon 
emitted

H2

H2

H2

H2
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Molecular  FormationH2

Molecular hydrogen formation affected by changes in 
ionization, heating and low-energy photons. 

H + e− ↔ H− + γ

H + H− ↔ H2 + e−

H+ + H− ↔ 2H

H2 + γLW ↔ 2H
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Molecular  FormationH2

Molecular hydrogen formation affected by changes in 
ionization, heating and low-energy photons. 

H + e− ↔ H− + γ

H + H− ↔ H2 + e−

H+ + H− ↔ 2H

H2 + γLW ↔ 2H
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Dark Matter and H2

Molecular hydrogen formation affected by changes in ionization, 
heating and low-energy photons. DM will change them all. 

H + e− ↔ H− + γ

H + H− ↔ H2 + e−

H+ + H− ↔ 2H

H2 + γLW ↔ 2H
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Spherical Collapse

Really requires simulation. To get a sense of the effect, we 
adopt the spherical collapse model. 

δ

Overdensity initially 
undergoes Hubble 

expansion.

Gravitational pull 
counteracts expansion. 

Collapse begins. 

Collapse leads to 
virialization. 

NTh ∼ GM2
h /Rh

ρh ∼ 200ρcrit
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How Efficient is Cooling?

We consider cooling to be efficient if after virialization, 
. This is our star formation criterion. | ·Th | ≳ HTh

Molecular hydrogen formed 
during spherical collapse.

NT ∼ GM2
h /Rh

ρh ∼ 200ρcrit

Molecular cooling 
occurs in the halo. 

Tegmark, Silk, Rees, Blanchard, Abel & Palla arXiv:astro-ph/9603007
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Evolution without DM NO DM
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Initial Hubble Expansion

nH ∝ (1 + z)3

δ

NO DM
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Spherical Collapse Begins NO DM
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Virialization

NTh ∼ GM2
h /Rh

ρh ∼ 200ρcrit

NO DM
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Intergalactic Medium (Mean) EvolutionNO DM
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Heating due to Collapse NO DM
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Virialization

NTh ∼ GM2
h /Rh

ρh ∼ 200ρcrit

NO DM
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Cooling is Efficient! NO DM
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Comparison with Dark Matter DM 
Short τ
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Additional Ionization and Heating DM 
Short τ
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Increased Ionization by DM Boosts H2
DM 

Short τ
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DM Heating Prevents Efficient Cooling DM 
Short τ



Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 53

in another model… DM 
Long τ
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Increased Ionization Boosts …H2
DM 

Long τ
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…but much less DM Heating DM 
Long τ
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Cooling Efficiency Enhanced! DM 
Long τ



Dark matter  
can delay or 
accelerate 

star formation. 

W. Qin, J. Muñoz, HL & T. Slatyer, 2308.12992



How do we 
look for this?
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CMB, Tγ
21(1 + δ) cm

Absorption

Spontaneous 
Emission

Stimulated 
Emission

Redshift z

Observes ,  
relative brightness  
with respect to CMB  

at 

T21(z)

21(1 + z) cm

21(1 − δ) cm

Hydrogen Atom 
Hyperfine Splitting

Ground 
State

Excited 
State

21 cm 
1.42 GHz

21-cm Cosmology
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Spin Temperature

Ground 
State

Excited 
State

21 cm 
1.42 GHz

n1

n0
= 3 exp (−

E21

kBTS )
21-cm signal set by spin temperature (population in ground vs. 

excited state). Can be coupled to CMB ( ), or baryons ( ). TS = Tγ TS = Tb

Baryons

CMB
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CMB, Tγ
21(1 + δ) cm

Absorption

Spontaneous 
Emission

Stimulated 
Emission

Redshift z
No differential 

brightness w.r.t. CMB

21(1 − δ) cm

2-State System Coupled to CMB
21 cm 

1.42 GHz
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CMB, Tγ
21(1 + δ) cm

Absorption

Spontaneous 
Emission

Stimulated 
Emission

Redshift z
Net absorption: 

Dimmer than CMB.

21(1 − δ) cm

Coupled to Colder Baryons
21 cm 

1.42 GHz



Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 63

CMB, Tγ
21(1 + δ) cm

Absorption

Spontaneous 
Emission

Stimulated 
Emission

Redshift z
Net emission:  

Brighter than CMB.

21(1 − δ) cm

Coupled to Hotter Baryons
21 cm 

1.42 GHz
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Coupled to CMB

Baryons colder

Lyman-  couples  
system to baryons

α

Global Signal

Baryons hotter

Coupled to colder 
baryons by collisions
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Global Signal Shift from DM

Observable in near-future with EDGES, SARAS etc. Also power 
spectrum of fluctuations by experiments like HERA. 



Exotic energy injection in the early 
Universe leaves remarkable signals 

that can be detected in current 
and future cosmological datasets.


