Exotic Energy Injection in the Early Universe

Hongwan Liu KICP University of Chicago & Fermilab

> Fermilab Theory Seminar 1 February 2023

SIMPS... but what is it?

 \sim

 \sim

image credit: Sandbox Studio, Chicago 33

 \bullet

NEUTRALINOS

 \sim \sim

Can we be agnostic, and still learn something about DM?

Miny… Moe?

Eeny… Meeny…

 \sim \sim

image credit: Sandbox Studio, Chicago

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 5

Standard Model Dark Sector MMMMM Sector

Dark Matter and the Standard Model

e, *u*, *d*, *ν* . . .

Dark Matter *χ*…

Nongravitational interaction between Standard Model and DM: experimentally testable and theoretically well-motivated.

Motivated by ideas for **dark matter production** in the early universe.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 66 Metal 1988 66 66 66 Metal 1988 6

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 7

DM is *cosmologically* stable, but small couplings to the SM can lead to decays if DM not protected by symmetry.

QCD Axion Axion-like Particles

Sterile Neutrinos

Cosmology

Cosmological probes highly effective: high densities, long duration, pristine environments, precision measurements.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 86 19 19 19 19 19 19 19 19 19 19 19

Cosmic Microwave Background (CMB) Power Spectrum

21-cm Cosmology

Energy Injection

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 10 10 10 10

Ionization

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 11 11 11

Excitation

Photons

How does this affect the Universe after recombination?

Standard Histories

Standard histories very well-understood before star formation: Believed to be understood at 0.1% precision.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 1994 13

Photons with energy > 13.6 eV are abundant: hydrogen atoms are ionized.

Recombination

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 14 14 14 14 14 14 14 14 14 14 14 14

Recombination

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 15 15

Universe expands, cools: protons and electrons recombines, Universe becomes neutral and transparent.

Compton scattering between free electrons and CMB photons keep matter and the CMB in thermal contact until $z \sim 150$.

Compton Scattering

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 16 16

Redshifting

After decoupling from photons, redshifts as nonrelativistic matter until star formation.

Simple evolution!

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 17 17

Ionization

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 18 18

Excitation

Photons

github.com/hongwanliu/DarkHistory

Calculates ionization history, temperature history and photon spectrum given an exotic source.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 19 19 19

Signals in Data?

20

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024

Increased Ionization

More free electrons means photons scatter more, affecting the CMB power spectrum.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 21 1986 1997 1898 1998 1998 1999 19

HL, W. Qin, Ridgway & Slatyer 2303.07370

Increased Heating - Ly*α*

Intergalactic medium temperature known through Lyman-*α* forest data. Strong constraints on sub-GeV DM decay.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 2024 22

HL, W. Qin, Ridgway & Slatyer 2008.01084

HL & Slatyer 1803.09739, Y. Sun, Foster, HL, Muñoz, Slatyer 2312.11608

21-cm will be very sensitive to heating of baryons during the **cosmic dark ages** ($6 \le z \le 30$).

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 1998 1999 1999 1999 1999 1999 1999

CMB Blackbody Distortions

Powerful probe for photons oscillating into other states. Useful for DM decay with next generation experiments (PIXIE).

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 2024 1991 1991 1991 1991 1991 1991

Caputo, HL, Mishra-Sharma & Ruderman 2002.05165, HL, W. Qin, Ridgway & Slatyer 2303.07370

Big Shift in Temperature & Ionization

25

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024

Does an orders-of-magnitude shift affect how the first stars form?

Dark matter can delay or accelerate star formation.

W. Qin, J. Muñoz, HL & T. Slatyer, 2308.12992

Star Formation

Schematically, stars form if a stellar mass, low density gas cloud can gravitationally collapse successfully.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 2024 27 27

R_{\star}^{\bullet}

But the pressure in a gas cloud counteracts gravity. Gas cloud must be sufficiently cold.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 28 28

M_{\star} , $T > T_{i}$

Gravity vs. Pressure

Gas Temperature in a Halo

$$
\sim \frac{GM_h^2}{R_h}, N \sim \frac{M_h}{m_H}
$$

$$
3 \times 10^3 \,\text{K} \left(\frac{M_h}{10^6 M_{\odot}} \right)^{2/3} \left(\frac{\rho_h}{200 \rho_{\text{crit}}(z=20)} \right)^1
$$

potential energy ~ kinetic energy

 NT_h

 $T_h \sim$

Gas in halos expected to be roughly $\sim 10^3 \text{ K}$.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 29 29

Initial temperature for successful collapse is much smaller than typical temperature in halo ($\sim 10^3$ K).

Initial Temperature for Collapse

 M_{\star}, T_{i}

 GM_{\star}^{2} ⋆ *Ri* ,*N* ∼ M_{\star} $m_{\rm H}$ $, R_i \sim (M_{\star}/\rho_h)$ 1/3

potential energy ~ kinetic energy when stable

 $T_i \ll 30$ K

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 **1989 18: 19 March 19: 19: 19: 19: 19:** 30

$$
K\left(\frac{M_{\star}}{10^3M_{\odot}}\right)^{2/3}\left(\frac{\rho_h}{200\rho_{\rm crit}(z=20)}\right)^{1/3}
$$

M_{\star}, T_{i} *Ri*

... or the gas cloud must be able to cool by emitting radiation.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 31 31

Cooling

Atomic Cooling

H atomic cooling **inefficient** well below $T \ll 10.2 \,\text{eV} = 10^5 \,\text{K}$ (no free electrons for bremsstrahlung).

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 **1998 1999 1999 1999 1999** 32

Gas Temperature in a Halo

 M_h , T_h

 NT_h

 $T_h \sim$

Atomic cooling (and bremsstrahlung) cannot cool gas below $\sim 10^3$ K in typical halos.

$$
\sim \frac{GM_h^2}{R_h}, N \sim \frac{M_h}{m_H}
$$

Rh

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 **1988** 1999 1999 1999 1999 1999 1999 1

$$
3 \times 10^3 \,\mathrm{K} \left(\frac{M_h}{10^6 M_\odot} \right)^{2/3} \left(\frac{\rho_h}{200 \rho_{\text{crit}}(z=20)} \right)
$$

potential energy ~ kinetic energy

Molecular Cooling

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 34 1991 11: 1991 134

- $\ddot{\bullet}$
-

 $l = 3$

Cooling from collisional excitation of hydrogen molecules crucial for star formation. How does DM affect H_2 formation?

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 and the Controller of the St. 35

Molecular Cooling

Molecular H₂ Formation

 $H^+ + H^- \leftrightarrow 2H$

Molecular hydrogen formation affected by changes in ionization, heating and low-energy photons.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 1986 1991 1898 1899 1898 1899 1899

$H + e^- \leftrightarrow H^- + \gamma$

- $H + H^{-} \leftrightarrow H_2 + e^{-}$
	-

$H_2 + \gamma_{\text{LW}} \leftrightarrow 2H$

Molecular H₂ Formation Molecular hydrogen formation affected by changes in $H + e^ \leftrightarrow$ $H^- + \gamma$ $H + H^{-} \leftrightarrow H_2 + e^{-}$ $H^+ + H^ \leftrightarrow$ 2H $H_2 + \gamma_{\rm LW}$ \leftrightarrow 2H

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 37 (1994) 1994 1994 1994 1997 1998

ionization, heating and low-energy photons.

Molecular hydrogen formation affected by changes in ionization, heating and low-energy photons. DM will change them all.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 **1989 1899 1899 1899 1899 1899 1899** 1

Dark Matter and H_2

Spherical Collapse

Really requires simulation. To get a sense of the effect, we adopt the spherical collapse model.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 39 39

Overdensity initially undergoes Hubble expansion.

Gravitational pull counteracts expansion. Collapse begins.

Collapse leads to virialization.

How Efficient is Cooling?

 $NT \thicksim GM_h^2$ h^2/R_h $\rho_h \thicksim 200 \rho_{\rm crit}$

> Molecular cooling occurs in the halo.

We consider cooling to be efficient if after virialization, $|T_h| \gtrsim HT_h$. This is our star formation criterion.

Molecular hydrogen formed during spherical collapse.

.
广 T_h | $\gtrsim HT_h$

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 1986 1997 1998 1998 1999 1999 1999

Tegmark, Silk, Rees, Blanchard, Abel & Palla arXiv:astro-ph/9603007

Evolution without DM NO DM

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 41

Initial Hubble Expansion

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 1986 1997 1998 1998 1999 1999 1999

(no DM decay/ann.) $n_{\rm H} \propto (1 + z)^3$ x_e $x_{\rm H_2}$ $T_{\rm halo}\ /\ 10^6\ {\rm K}$

 $n_{\rm H}$ / 10^3 $\rm cm^{-3}$ $T_{\rm IGM}$ / 10^6 K 10^2 Redshift, $1 + z$

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 **1988** 1998 1999 1999 1999 1999 1999

Virialization

 $NT_h \sim GM_h^2/R_h$ $\rho_h \thicksim 200 \rho_{\rm crit}$

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 44 44 44

Intergalactic Medium (Mean) Evolution^{NO DM}

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 1998 1999 1999 1999 1999 1999 1999

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 1986 1991 1891 1891 1891 1891 1891

Virialization

 NT_h ∼ GM_h^2/R_h

 $\rho_h \thicksim 200 \rho_{\rm crit}$

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 47 47

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 48 48

Comparison with Dark Matter Short

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 1949 1949

Additional Ionization and Heating Short

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 50 50

Increased Ionization by DM Boosts H_2

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 51 51

DM Heating Prevents Efficient Cooling

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 Fermilab Theory Seminar, 1 Feb 2024

in another model… DM

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 61 11 11 11 11 11 11 11 11 11 11 13

Increased Ionization Boosts H_2 …

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 54 54

…but much less DM Heating DM

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 55 55

Cooling Efficiency Enhanced! Long

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 1998 1999 1999 1999 1999 1999 1999

Dark matter can delay or accelerate star formation.

W. Qin, J. Muñoz, HL & T. Slatyer, 2308.12992

How do we look for this?

Observes $T_{21}(z)$, relative brightness with respect to CMB

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 59 59 at 21(1 + *z*) cm

Spontaneous Emission 21-cm Cosmology

$21(1 - \delta)$ cm

Spin Temperature

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 60

21-cm signal set by spin temperature (population in ground vs. excited state). Can be coupled to CMB ($T_s = T_\gamma$), or baryons ($T_s = T_b$).

Emission

No differential brightness w.r.t. CMB

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 61 61

2-State System Coupled to CMB

 $21(1 - \delta)$ cm

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 62

Spontaneous Emission Net emission: Brighter than CMB. $21(1 - \delta)$ cm Coupled to Hotter Baryons

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 63 63

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 64 64

Global Signal

Global Signal Shift from DM

Observable in near-future with EDGES, SARAS etc. Also power spectrum of fluctuations by experiments like HERA.

Hongwan Liu (KICP UChicago & Fermilab) Fermilab Theory Seminar, 1 Feb 2024 65 65

Exotic energy injection in the early Universe leaves remarkable signals that can be detected in current and future cosmological datasets.

