

Gravitational form factors on the lattice

Fermilab Theory Seminar

June 20, 2024

Dan Hackett (FNAL)

Patrick Oare (MIT) Dimitra Pefkou (Berkeley) Phiala Shanahan (MIT)

Outline

Gravitational structure of hadrons Gravitational form factors (GFFs)? Why are GFFs interesting?

GFFs on the lattice

Overview of calculation

Results

GFFs of pion, proton (w/ flavor decomp) Experimental comparison

Mechanical densities & radii

Glueball GFFs

Very prelim results

2307.11707

Gravitational form factors of the pion from lattice QCD

Daniel C. Hackett, Patrick R. Oare, Dimitra A. Pefkou, and Phiala E. Shanahan Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

The two gravitational form factors of the pion, $A^{\pi}(t)$ and $D^{\pi}(t)$, are computed as functions of the momentum transfer squared t in the kinematic region $0 \leq -t < 2 \text{ GeV}^2$ on a lattice QCD ensemble with quark masses corresponding to a close-to-physical pion mass $m_{\pi} \approx 170$ MeV and $N_f = 2 + 1$ quark flavors. The flavor decomposition of these form factors into gluon, up/down light-quark, and strange quark contributions is presented in the $\overline{\text{MS}}$ scheme at energy scale $\mu = 2$ GeV, with renormalization factors computed non-perturbatively via the RI-MOM scheme. Using monopole and z-expansion fits to the gravitational form factors, we obtain estimates for the pion momentum fraction and D-term that are consistent with the momentum fraction sum rule and the next-toleading order chiral perturbation theory prediction for $D^{\pi}(0)$.

2310.08484

Gravitational form factors of the proton from lattice QCD

Daniel C. Hackett,^{1,2} Dimitra A. Pefkou,^{3,2} and Phiala E. Shanahan²

¹Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A. ²Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A. ³Department of Physics, University of California, Berkeley, CA 94720, U.S.A

The gravitational form factors (GFFs) of a hadron encode fundamental aspects of its structure, including its shape and size as defined from e.g., its energy density. This work presents a determination of the flavor decomposition of the GFFs of the proton from lattice QCD, in the kinematic region $0 \leq -t \leq 2 \text{ GeV}^2$. The decomposition into up-, down-, strange-quark, and gluon contributions provides first-principles constraints on the role of each constituent in generating key proton structure observables, such as its mechanical radius, mass radius, and *D*-term.

Gravitational structure of hadrons

Gravitational form factors (GFFs)

GFFs are EMT form factors

Schematically, for any hadron:

Graviton scattering \sim symmetric EMT

$$T^{\{\mu\nu\}} = \frac{2}{\sqrt{-g}} \frac{\delta S_{QCD}}{\delta g_{\mu\nu}} = 2 \operatorname{Tr} \left[-G^{\alpha\mu} G^{\nu}_{\alpha} + \frac{1}{4} g^{\mu\nu} G^{\alpha\beta} G_{\alpha\beta} \right] + \bar{q} \gamma^{\{\mu} i \overleftrightarrow{D}^{\nu\}} q$$
$$a^{\{\mu} b^{\nu\}} \equiv \frac{1}{2} (a^{\mu} b^{\nu} + a^{\nu} b^{\mu})$$

 $\langle hadron(p')|T(\Delta)|hadron(p)\rangle = \sum (Lorentz structure)_i GFF_i(t = \Delta^2)$

4

Gravitational form factors
$$T^{\{\mu\nu\}} = 2 \operatorname{Tr} \left[-G^{\alpha\mu}G^{\nu}_{\alpha} + \frac{1}{4}g^{\mu\nu}G^{\alpha\beta}G_{\alpha\beta} \right] + \bar{q} \gamma^{\{\mu}i \overleftrightarrow{D}^{\nu\}} q$$

$$a^{\{\mu}b^{\nu\}} \equiv \frac{1}{2}(a^{\mu}b^{\nu} + a^{\nu}b^{\mu})$$

$$\overrightarrow{D} = (\overrightarrow{D} - \overleftarrow{D})/2$$

$$U, \overline{U} = \text{Dirac spinors}$$

$$P = (p' + p)/2$$

$$\Delta = p' - p$$

$$t = \Delta^{2}$$

Nucleon:

$$\left\langle N(p') \Big| T^{\{\mu\nu\}} \Big| N(p) \right\rangle = \overline{U}(p') \left[A(t) \frac{P^{\{\mu} P^{\nu\}}}{M} + J(t) \frac{i P^{\{\mu} \sigma^{\nu\}\rho} \Delta_{\rho}}{2M} + D(t) \frac{\Delta^{\{\mu} \Delta^{\nu\}} - g^{\mu\nu} \Delta^2}{4M} \right] U(p)$$

Pion:

$$\left\langle \pi(p') \left| T^{\{\mu\nu\}} \right| \pi(p) \right\rangle = A(t) \ 2P^{\mu}P^{\nu} + D(t) \frac{1}{2} \left(\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^2 \right)$$

Why are these interesting?

Global properties

$$\left\langle N(p') \left| T^{\{\mu\nu\}} \right| N(p) \right\rangle = \overline{U}(p') \left[A(t) \frac{P^{\{\mu} P^{\nu\}}}{M} + J(t) \frac{i P^{\{\mu} \sigma^{\nu\}\rho} \Delta_{\rho}}{2M} + D(t) \frac{\Delta^{\{\mu} \Delta^{\nu\}} - g^{\mu\nu} \Delta^2}{4M} \right] U(p)$$

 $\partial_{\mu}T^{\mu\nu} = 0 \rightarrow \text{GFFs}$ are scale- and scheme-independent Forward GFFs are fundamental, global properties:

$$\begin{aligned} A(0) &= 1 \iff \langle p | T^{tt} | p \rangle = M \\ J(0) &= \frac{1}{2} = \text{Total spin} \\ B(0) &= 2J(0) - A(0) = 0 \quad \text{"vanishing of the anomalous gravitomagnetic moment"} \\ D(0) &= ??? \quad (\text{internal forces}) \end{aligned}$$

Similar for pion, except no J

D(0): "the last global unknown"

Polyakov Schweitzer 1805.06596

em:	$\partial_\mu J^\mu_{ m em}~=0$	$\langle N' J^{\mu}_{\mathbf{em}} N angle$	\rightarrow	$Q = \mu =$	= $1.602176487(40) \times 10^{-19}$ C = $2.792847356(23)\mu_N$
weak:	PCAC	$\langle N' J^{\mu}_{\mathbf{weak}} N angle$	\rightarrow	$g_A =$	= 1.2694(28)
				g_p =	= 8.06(55)
gravity:	$\partial_{\mu}T^{\mu\nu}_{\mathbf{grav}}=0$	$\langle N' T^{\mu u}_{\mathbf{grav}} N angle$	\rightarrow	m =	$= 938.272013(23) \mathrm{MeV}/c^2$
				<i>J</i> =	= = =
				D =	= ?

Table I. The global properties of the proton defined in terms of matrix elements of the conserved currents associated with respectively electromagnetic, weak, and gravitational interaction. Notice the weak currents include the partially conserved axial current, and g_A or g_p are strictly speaking defined in terms of transition matrix elements in the neutron β -decay or muon-capture. The values of the properties are from the particle data book [107] and [108] (for g_p) except for the unknown *D*-term.

What is a nucleon made of?

Gluons $T_g^{\{\mu\nu\}} = 2 \operatorname{Tr}[G^{\alpha\{\mu}G^{\nu\}\alpha}]$ Quarks $T_q^{\{\mu\nu\}} = \overline{q} \gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}} q$

$$\begin{split} \left\langle N(p') \left| T_{g,q}^{\{\mu\nu\}} \right| N(p) \right\rangle &= \bar{u}(p') \left[A_{g,q}(t) \frac{P^{\{\mu}P^{\nu\}}}{M} + J_{g,q}(t) \frac{i P^{\{\mu}\sigma^{\nu\}\rho}\Delta_{\rho}}{2M} + D_{g,q}(t) \frac{\Delta^{\{\mu}\Delta^{\nu\}} - g^{\mu\nu}\Delta^{2}}{4M} + \bar{c}_{g,q}(t) Mg^{\mu\nu} \right] u(p) \end{split}$$

(Similar for pion!)

FNAL Seminar - Dan Hackett - 6/20/24

What is a nucleon made of?

Gluons $T_g^{\{\mu\nu\}} = 2 \operatorname{Tr}[G^{\alpha\{\mu}G^{\nu\}\alpha}]$ Quarks $T_q^{\{\mu\nu\}} = \overline{q} \gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}} q$

Power-divergent mixing

(Similar for pion!)

What is a nucleon made of? Gluons $T_a^{\{\mu\nu\}} = 2 \operatorname{Tr}[G^{\alpha\{\mu}G^{\nu\}\alpha}]$ Quarks $T_a^{\{\mu\nu\}} = \bar{q} \gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}}q$ Spin fraction Momentum fraction $J_{q}(0) + \sum_{q} J_{q}(0) = \frac{1}{2}$ $A_{q,q}(0) = \langle x \rangle_{q,q}$ $A_{a}(0) + \sum_{a} A_{a}(0) = 1$ $\left\langle N(p') \left| T_{g,q}^{\{\mu\nu\}} \right| N(p) \right\rangle = \bar{u}(p') \left| A_{g,q}(t) \frac{P^{\{\mu}P^{\nu\}}}{M} + J_{g,q}(t) \frac{i P^{\{\mu\sigma\nu\}} \Delta_{\rho}}{2M} \right|$ $+ D_{g,q}(t) \frac{\Delta^{\{\mu} \Delta^{\nu\}} - g^{\mu\nu} \Delta^2}{4M} + \bar{c}_{g,q}(t) M g^{\mu\nu} \bigg| u(p)$ Not conserved $\sum_{a} \dot{c_{a}} + \dot{c_{a}} = 0$ Internal forces $D(0) = D_a(0) + \sum_a D_a(0)$ Power-divergent mixing

(Similar for pion!)

Forward GFFs & decompositions

$$\left\langle N(p') \left| T_{g,q}^{\{\mu\nu\}} \right| N(p) \right\rangle = \overline{U}(p') \left[A_{g,q}(t) \frac{P^{\{\mu}P^{\nu\}}}{M} + J_{g,q}(t) \frac{i P^{\{\mu}\sigma^{\nu\}\rho}\Delta_{\rho}}{2M} + D_{g,q}(t) \frac{\Delta^{\{\mu}\Delta^{\nu\}} - g^{\mu\nu}\Delta^{2}}{4M} + \overline{c}_{g,q}(t) Mg^{\mu\nu} \right] U(p)$$

FNAL Seminar - Dan Hackett - 6/20/24

GFFs are Mellin moments of GPDs, e.g.

$$\int dx \, x \, H_q(x,\xi,t) = A_q(t) + \xi^2 D_q(t) \qquad \int dx \, H_g(x,\xi,t) = A_g(t) + \xi^2 D_g(t)$$
$$\int dx \, x \, E_q(x,\xi,t) = B_q(t) - \xi^2 D_q(t) \qquad \int dx \, E_g(x,\xi,t) = B_g(t) - \xi^2 D_g(t)$$

 \rightarrow relate to experiment via factorization

FNAL Seminar - Dan Hackett - 6/20/24

Experimental results

Proton: quark *D* from DVCS

[Burkert Elouadrhiri Girod 2018]

FNAL Seminar - Dan Hackett - 6/20/24

GFFs on the lattice

Overview of calculation

Need to compute:

Bare matrix elements for $f \in \{g, u, d, s\}$ to constrain bare GFFs

$$\langle p' | T_f^{\mathrm{b}}(\Delta) | p \rangle = c_A A_f^{\mathrm{b}}(t) + c_J J_f^{\mathrm{b}}(t) + c_D D_f^{\mathrm{b}}(t)$$

Isosinglet mixing matrix (+ non-singlet Z_{u+d-2s})

$$\begin{bmatrix} T_q^{\overline{MS}} \\ T_g^{\overline{MS}} \end{bmatrix} = \begin{bmatrix} Z_{qq}^{\overline{MS}} & Z_{qg}^{\overline{MS}} \\ Z_{gq}^{\overline{MS}} & Z_{gg}^{\overline{MS}} \end{bmatrix} \begin{bmatrix} T_q^{\text{bare}} \\ T_g^{\text{bare}} \end{bmatrix}$$

→ Renormalized linear constraints on GFFs at different values of $t = \Delta^2 = (p' - p)^2$ Fit to extract GFFs(t)

100 50 -50 -100-0.50.0 0.5 1.0 2.0 -2.0-1.51.5 A

Ensembles

Gauge action: tadpole-improved Luscher-Weisz

Fermion action: 2 + 1 flavors, stout-smeared clover

Bare matrix elements

Glue: 2511 configs Quarks: 1381 configs (subset) ["a091m170" (JLab/W&M/MIT/LANL)]

Renormalization

Conn. quark: 240 configs Disco./glue: 20000 configs

Ensembles

Gauge action: tadpole-improved Luscher-Weisz

Fermion action: 2 + 1 flavors, stout-smeared clover

Bare matrix elements

Glue: 2511 configs Quarks: 1381 configs (subset) ["a091m170" (JLab/W&M/MIT/LANL)]

Renormalization

Conn. quark: 240 configs Disco./glue: 20000 configs

"Single"-ensemble calculation: can't quantify remaining artifacts due to discretization, unphysical quark masses, finite volume

FNAL Seminar - Dan Hackett - 6/20/24

Lattice EMT operators

Quark:
$$T_q^{\{\mu\nu\}} = \bar{q}\gamma^{\{\mu}i\overleftrightarrow{D}^{\nu\}}q$$

Discretized covariant derivative

 $\begin{aligned} &\overleftrightarrow{D} = (\overrightarrow{D} - \overleftarrow{D})/2 \\ &(\overrightarrow{D}_{\mu}\psi)(x) = \frac{1}{2} \left[U_{\mu}(x)\psi(x+\mu) - U_{\mu}^{\dagger}(x-\mu)\psi(x-\mu) \right] \\ &(\overline{\psi}\,\overleftarrow{D}_{\mu})(x) = \frac{1}{2} \left[\overline{\psi}(x+\mu)U_{\mu}^{\dagger}(x) - \overline{\psi}(x-\mu)U_{\mu}(x-\mu) \right] \end{aligned}$

Glue:
$$T_g^{\{\mu\nu\}} = \frac{2}{g^2} \operatorname{Tr}[G^{\alpha\{\mu}G^{\nu\}\alpha}]$$

Clovers flowed to $t/a^2 = 2$

$$G_{\mu\nu} \sim \left(Q_{\mu\nu} - Q_{\mu\nu}^{\dagger} \right)$$

Project to irreps of hypercubic group

$$\begin{split} \tau_1^{(3)} &: \quad \frac{1}{2} (T^{xx} + T^{yy} - T^{zz} + T^{tt}), \quad \frac{1}{\sqrt{2}} (T^{zz} + T^{tt}), \quad \frac{1}{\sqrt{2}} (T^{xx} - T^{yy}) \\ \tau_3^{(6)} &: \quad \left\{ \frac{i^{\delta_{\mu 0}}}{\sqrt{2}} (T^{\mu \nu} + T^{\nu \mu}), \quad 0 \le \mu \le \nu \le 3 \right\} \end{split}$$

Bare matrix elements from three-point functions

Can't compute matrix elements directly, must extract from

 $\langle \chi(p',t_f) T^{b}(\Delta,\tau) \bar{\chi}(p,0) \rangle \sim Z_{p'} Z_p \langle p' | T^{b}(\Delta) | p \rangle e^{-E'(t_f-\tau)-E\tau} + (\text{excited states})$

Bare matrix elements from three-point functions

Can't compute matrix elements directly, must extract from

 $\langle \chi(p',t_f) T^{b}(\Delta,\tau) \bar{\chi}(p,0) \rangle \sim Z_{p'} Z_p \langle p' | T^{b}(\Delta) | p \rangle e^{-E'(t_f-\tau)-E\tau} + (\text{excited states})$

Connected Quark (u, d)

Sequential source (thru sink)

- 3 sink momenta
- 1 spin channel
- Sources / cfg varies w/ t_f

Disconnected Quark (u = d, s)

- 1024 sources / cfg
- 4 spin channels
- Hierarchical probing w/ 512
 Hadamard vectors
- $2Z_4$ noise shots / cfg

Glue (disconnected)

- 1024 sources / cfg
- 4 spin channels

Isolate matrix element by constructing ratios

$$R(p,p';\tau,t_f) = \frac{C^{3\text{pt}}(p,p';t_f,\tau)}{C^{2\text{pt}}(p';t_f)} \sqrt{\frac{C^{2\text{pt}}(p;t_f-\tau)}{C^{2\text{pt}}(p';t_f-\tau)}} \frac{C^{2\text{pt}}(p';t_f)}{C^{2\text{pt}}(p;t_f)} \frac{C^{2\text{pt}}(p';\tau)}{C^{2\text{pt}}(p;\tau)}$$

$$= \# \langle p'|T^b(\Delta)|p \rangle + O\left(e^{-\Delta E \tau - \Delta E'(t_f-\tau)}\right)$$

Isolate matrix element by constructing ratios

$$R(p,p';\tau,t_f) = \frac{C^{3\text{pt}}(p,p';t_f,\tau)}{C^{2\text{pt}}(p';t_f)} \sqrt{\frac{C^{2\text{pt}}(p;t_f-\tau)}{C^{2\text{pt}}(p';t_f-\tau)}} \frac{C^{2\text{pt}}(p';t_f)}{C^{2\text{pt}}(p;t_f)} \frac{C^{2\text{pt}}(p';\tau)}{C^{2\text{pt}}(p;\tau)}$$

$$= \# \langle p'|T^b(\Delta)|p \rangle + O\left(e^{-\Delta E \tau - \Delta E'(t_f-\tau)}\right)$$

Noisy \rightarrow use all data available \rightarrow too much data

 \rightarrow Bin all ratios with same kinematic coefficients

 $R \sim k_A A(t) + k_J J(t) + k_D D(t)$ where k depend on momenta, spin channel, irrep basis element, ...

Channel	Multiplicities						
Conn. <i>u</i>	6982		3081				
Conn. d	6982	6982					
Disco. $u = d$	1200296	Bin	11452				
Disco <i>s</i>	1200296		11452				
Glue	1200296		11452				
TOTAL	3614852		40518				

Have \sim 40k ratios

$$R_{\text{binned}}(\tau, t_f) \sim \# \langle p' | T^b(\Delta) | p \rangle + O\left(e^{-\Delta E \tau - \Delta E'(t_f - \tau)}\right)$$

Need to analyze each to extract matrix element \rightarrow Large-scale automated analysis

Have \sim 40k ratios

$$R_{\text{binned}}(\tau, t_f) \sim \# \langle p' | T^b(\Delta) | p \rangle + O\left(e^{-\Delta E \tau - \Delta E'(t_f - \tau)}\right)$$

Need to analyze each to extract matrix element \rightarrow Large-scale automated analysis

Approach: use "summation method"

$$\Sigma(t_f) = \sum_{\tau=\tau_{cut}}^{t_f-\tau_{cut}} R(\tau, t_f) = (\text{const}) + \# \langle p' | T^b(\Delta) | p \rangle t_f + O(e^{-\delta E t_f})$$

... w/ Bayesian model averaging over fit ranges, τ_{cut} [Jay Neil 2008.01069]

Vary analysis hyperparameters to ensure stability in final results

Example pion ratios: $\tau_1^{(3)}$

Example nucleon ratios

Renormalization

Assert RI-MOM conditions at scale $\mu^2 = p^2$

$$\left\langle q(p) T_f(0) \overline{q}(p) \right\rangle_{\text{lattice}} = Z_q R_{fq}^{\text{RI}} \left\langle q(p) T_f(0) \overline{q}(p) \right\rangle_{\text{tree}}$$
$$\left\langle A(p) T_f(0) A(p) \right\rangle_{\text{lattice}} = Z_g R_{fg}^{\text{RI}} \left\langle A(p) T_f(0) A(p) \right\rangle_{\text{tree}}$$

...in Landau gauge

...flow T_g to $t/a^2 = 1.2$ to match glue operator in bare matrix elements

Renormalization

Assert RI-MOM conditions at scale $\mu^2 = p^2$

$$\left\langle q(p) T_f(0) \bar{q}(p) \right\rangle_{\text{lattice}} = Z_q R_{fq}^{\text{RI}} \left\langle q(p) T_f(0) \bar{q}(p) \right\rangle_{\text{tree}}$$
$$\left\langle A(p) T_f(0) A(p) \right\rangle_{\text{lattice}} = Z_g R_{fg}^{\text{RI}} \left\langle A(p) T_f(0) A(p) \right\rangle_{\text{tree}}$$

...in Landau gauge

...flow T_g to $t/a^2 = 1.2$ to match glue operator in bare matrix elements

Apply perturbative matching to
$$\overline{\text{MS}}$$
 and run to $\mu = 2 \text{ GeV}$
 $\left(Z_{v}^{\overline{MS}}\right)^{-1}(\mu^{2}) = C_{v}^{\text{RI}/\overline{MS}}(\mu^{2},\mu_{R}^{2}) R_{v}^{\text{RI}}(\mu_{R}^{2})$
 $\left[Z_{qq}^{\overline{MS}} Z_{qg}^{\overline{MS}}\right]^{-1}(\mu^{2}) = \begin{bmatrix} R_{qq}^{\text{RI}} & R_{qg}^{\text{RI}} \\ R_{gq}^{\text{RI}} & R_{gg}^{\text{RI}} \end{bmatrix}(\mu_{R}^{2}) \begin{bmatrix} C_{qq}^{\text{RI}/\overline{MS}} & C_{qg}^{\text{RI}/\overline{MS}} \\ C_{gq}^{\text{RI}/\overline{MS}} & C_{gg}^{\text{RI}/\overline{MS}} \end{bmatrix}(\mu^{2},\mu_{R}^{2})$

Model and fit residual $(ap)^2$ dependence in each of product $R^{RI} C^{RI/\overline{MS}}$

Renormalization: removing discretization artifacts

FNAL Seminar - Dan Hackett - 6/20/24

Renormalization: removing discretization artifacts

Model discretization artifacts as polynomials, inverse polynomials

+ logs for nonperturbative⁻² effects -4

Overview of calculation

Need to compute:

Bare matrix elements for $f \in \{g, u, d, s\}$ to constrain bare GFFs

$$\langle p' | T_f^{\mathrm{b}}(\Delta) | p \rangle = c_A A_f^{\mathrm{b}}(t) + c_J J_f^{\mathrm{b}}(t) + c_D D_f^{\mathrm{b}}(t)$$

Isosinglet mixing matrix (+ non-singlet Z_{u+d-2s})

$$\begin{bmatrix} T_q^{\overline{MS}} \\ T_g^{\overline{MS}} \end{bmatrix} = \begin{bmatrix} Z_{qq}^{\overline{MS}} & Z_{qg}^{\overline{MS}} \\ Z_{gq}^{\overline{MS}} & Z_{gg}^{\overline{MS}} \end{bmatrix} \begin{bmatrix} T_q^{\text{bare}} \\ T_g^{\text{bare}} \end{bmatrix}$$

→ Renormalized linear constraints on GFFs at different values of $t = \Delta^2 = (p' - p)^2$ Fit to extract GFFs(t)

Results

Pion GFFs (total)

Error on χ PT estimate due to different estimates for LECs [Donaghue Leutwyler 1991]

FNAL Seminar - Dan Hackett - 6/20/24

Nucleon		Dipole			z-expansion	1	
	A_i	J_i	D_i	A_i	J_i	D_i	
\overline{u}	0.3255(92)	0.2213(85)	-0.56(17)	0.349(11)	0.238(18)	-0.56(17)	
d	0.1590(92)	0.0197(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)	
S	0.0257(95)	0.0097(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)	
u+d+s	0.510(25)	0.251(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)	
g	0.501(27)	0.255(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)	
Total	1.011(37)	0.506(25)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)	

Pion	monopole	z-expansion
$A_g^{\pi}(0)$	0.546(18)	0.546(22)
$A_q^{\pi}(0)$	0.481(15)	0.485(18)
$A^{\pi}_{u+d}(0)$	0.463(11)	0.468(12)
$A^{\pi}_{s}(0)$	0.0176(57)	0.0174(66)
$A^{\pi}(0)$	1.026(23)	1.031(28)
$D_g^{\pi}(0)$	-0.596(65)	-0.618(75)
$D^{ ilde{\pi}}_q(0)$	-0.304(26)	-0.242(53)
$D_{u+d}^{\pi}(0)$	-0.313(17)	-0.265(36)
$D^{\pi}_{s}(0)$	0.0092(94)	0.023(19)
$D^{\pi}(0)$	-0.900(70)	-0.860(92)

FNAL Seminar - Dan Hackett - 6/20/24

Nucleo	n	Ι	Dipole			z-expansion	
	A_i		J_i	D_i	A_i	J_i	D_i
\overline{u}	0.3	255(92)	0.2213(85)	-0.56(17)	0.349(11)	0.238(18)	-0.56(17)
d	0.1	590(92)	0.0197(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)
s	0.0	257(95)	0.0097(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)
u+d+s	0.5	10(25)	0.251(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)
g	0.5	01(27)	0.255(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)
Total	1.0	11(37)	0.506(25)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)
$\begin{array}{c} \hline \textbf{Pion} \\ \hline A_g^{\pi}(0) \\ A_q^{\pi}(0) \\ A_{u+d}^{\pi}(0) \\ A_s^{\pi}(0) \\ A^{\pi}(0) \\ \hline D_g^{\pi}(0) \\ D_q^{\pi}(0) \\ D_u^{\pi}(0) \\ D_{u+d}^{\pi}(0) \\ D_s^{\pi}(0) \end{array}$	$\begin{array}{c} \text{monopole} \\ 0.546(18) \\ 0.481(15) \\ 0.463(11) \\ 0.0176(57) \\ 1.026(23) \\ \hline -0.596(65) \\ -0.304(26) \\ -0.313(17) \\ 0.0092(94) \end{array}$	$\begin{array}{c} z\text{-expansion} \\ 0.546(22) \\ 0.485(18) \\ 0.468(12) \\ 0.0174(66) \\ 1.031(28) \\ \hline -0.618(75) \\ -0.242(53) \\ -0.265(36) \\ 0.023(19) \end{array}$	Sum	rules (consiste	ncv check)		
$D^{\pi}(0)$	$-0.900(\dot{7}0)$	-0.860(92)	Juil				20

FNAL Seminar - Dan Hackett - 6/20/24

Nucleo	n	Dipole					z-expansion			
	A_i		J_i		D_i	A_i	J_i	D_i		
\overline{u}	0.3	0.3255(92) $0.2213(85)$			-0.56(17)	0.349(11)	0.238(18)	-0.56(17)		
d	0.1	590(92)	0.01	97(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)		
s	0.0	257(95)	0.00	97(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)		
u+d+s	0.5	10(25)	0.25	1(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)		
g	0.5	0.501(27)		5(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)		
Total	1.0	11(37)	0.50	6(25)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)		
$ \begin{array}{r} \begin{array}{c} \textbf{Pion} \\ \hline A_{g}^{\pi}(0) \\ A_{q}^{\pi}(0) \\ A_{q}^{\pi}(0) \\ A_{s}^{\pi}(0) \\ A_{s}^{\pi}(0) \\ \hline D_{g}^{\pi}(0) \\ D_{q}^{\pi}(0) \\ D_{u+d}^{\pi}(0) \\ \hline \end{array} $	$\begin{array}{c} \text{monopole} \\ 0.546(18) \\ 0.481(15) \\ 0.463(11) \\ 0.0176(57) \\ 1.026(23) \\ \hline -0.596(65) \\ -0.304(26) \\ -0.313(17) \\ 0.0000(61) \\ 0.0000(61) \\ \hline \end{array}$	z-expansion 0.546(22) 0.485(18) 0.468(12) 0.0174(66) 1.031(28) -0.618(75) -0.242(53) -0.265(36)		cf. glc <i>A_g</i> ([Hou e	obal fit result 0) = 0.414(8) t al. 1912.10053]					
$D^{\pi}(0)$	-0.900(70)	-0.860(92)		Juill		ILY LIECK		20		

FNAL Seminar - Dan Hackett - 6/20/24

Nucleon		Γ	Dipole				z-expansion	
	A_i		J_i		D_i	A_i	J_i	D_i
u	0.3255(92) 0.2213			13(85)	-0.56(17)	0.349(11)	0.238(18)	-0.56(17)
d	0.1	590(92)	0.019	97(85)	-0.57(17)	0.171(11)	0.033(18)	-0.56(17)
s	0.0	257(95)	0.009	97(82)	-0.18(17)	0.032(12)	0.014(19)	-0.08(17)
u+d+s	0.5	10(25)	0.251	(21)	-1.30(49)	0.552(31)	0.286(48)	-1.20(48)
g	0.5	01(27)	0.255	5(13)	-2.57(84)	0.526(31)	0.234(27)	-2.15(32)
Total	1.0	11(37)	0.506	3(25)	-3.87(97)	1.079(44)	0.520(55)	-3.35(58)
Pion $A_g^{\pi}(0)$ $A_q^{\pi}(0)$ $A_q^{\pi}(0)$ $A_{u+d}^{\pi}(0)$ $A_s^{\pi}(0)$ $A_s^{\pi}(0)$ $D_g^{\pi}(0)$ $D_q^{\pi}(0)$ $D_{u+d}^{\pi}(0)$ $D_u^{\pi}(0)$	$\begin{array}{r} \text{monopole} \\ 0.546(18) \\ 0.481(15) \\ 0.463(11) \\ 0.0176(57) \\ 1.026(23) \\ \hline -0.596(65) \\ -0.304(26) \\ -0.313(17) \\ 0.0092(94) \end{array}$	$\begin{array}{c} z\text{-expansion} \\ 0.546(22) \\ 0.485(18) \\ 0.468(12) \\ 0.0174(66) \\ 1.031(28) \\ \hline -0.618(75) \\ -0.242(53) \\ -0.265(36) \\ 0.023(19) \end{array}$		cf. glo A_g ([Hou e	(0) = 0.414(8) et al. 1912.10053	F S I	First determination Satisfies χ PT bound $D(0)/M \leq -1.1$	on! nd (1) GeV ⁻¹

FNAL Seminar - Dan Hackett - 6/20/24

Nucleon vs. experiment

(G)FFs and Tomography

Fourier-transformed form factors provide information about spatial densities

Example: electric charge density in the neutron from G_E^n

Atac, Constantinou, Meziani, Paolone, Sparveris 2103.10840

Applies also for GFFs \rightarrow mechanical densities

Mechanical densities from GFFs

- 1. Parametrize $T_{\mu\nu}(t)$ with GFFs
- 2. Fourier transform $T_{\mu\nu}(t) \rightarrow T_{\mu\nu}(r)$
- 3. Identify

$$T_{\mu\nu}(r) = \begin{bmatrix} T_{tt}(r) & \\ & T_{ij}(r) \end{bmatrix} = \begin{bmatrix} \epsilon(r) & \\ & \left(\frac{r_i r_j}{r^2} - \frac{1}{d} \delta_{ij}\right) s(r) + \delta_{ij} p(r) \end{bmatrix}$$

$$[f(t)]_{\rm FT} = \int \frac{d^3 \mathbf{\Delta}}{(2\pi)^3} e^{-i\mathbf{\Delta} \cdot \mathbf{r}} f(t)$$

Mechanical densities from GFFs

- 1. Parametrize $T_{\mu\nu}(t)$ with GFFs
- 2. Fourier transform $T_{\mu\nu}(t) \rightarrow T_{\mu\nu}(r)$
- 3. Identify

$$T_{\mu\nu}(r) = \begin{bmatrix} T_{tt}(r) & \\ & T_{ij}(r) \end{bmatrix} = \begin{bmatrix} \epsilon(r) & \\ & \left(\frac{r_i r_j}{r^2} - \frac{1}{d} \delta_{ij}\right) s(r) + \delta_{ij} p(r) \end{bmatrix}$$

 \rightarrow Spatial densities (Breit frame)

energy
$$\epsilon(r) = M \left[A(t) - \frac{t}{4M^2} \left(D(t) + A(t) - 2J(t) \right) \right]_{FT}$$
 shear forces $s(r) = -\frac{1}{4M} r \frac{d}{dr} \frac{1}{r} \frac{d}{dr} \left[D(t) \right]_{FT}$
pressure $p(r) = \frac{1}{6M} \frac{1}{r^2} \frac{d}{dr} r^2 \frac{d}{dr} \left[D(t) \right]_{FT}$ longitudinal force $F^{\parallel}(r) = p(r) + \frac{2s(r)}{3}$

Caveat: physical significance of these analogies is under debate

FNAL Seminar - Dan Hackett - 6/20/24

$$[f(t)]_{\rm FT} = \int \frac{d^3 \mathbf{\Delta}}{(2\pi)^3} e^{-i\mathbf{\Delta} \cdot \mathbf{r}} f(t)$$

How big is a proton?

Glueball GFFs

Glueball GFFs: Overview

Idea: are "exotic" states glueballs? Can structure observables discriminate?

Approach:

Glueballs are noisy \rightarrow need high stats

- \rightarrow Study in SU(3) Yang-Mills (no quarks; cheaper)
- \rightarrow Simplest glueball structure observable: GFFs

Calculation:

 $\beta = 5.97 \text{ on } 24^3 \times 48, \ a \approx 0.1 \text{ fm}, \ M_{0^{++}} \approx 1.6 \text{ GeV}$ 2×10^7 configs w/ heatbath, overrelaxation Variational method (GEVP) to control excited states + construct optimal interpolators for 3pts Look at lightest glueball 0^{++} (for now)

Preliminary Results: Gluon GFFs

Other hadrons from [Pefkou DH Shanahan 2107.10368]: $a \approx 0.11$ fm, $M_{\pi} \approx 450$ MeV

Preliminary Results: Total GFFs

Glueball: Gluon GFFs = total GFFs in Yang-Mills Pion: total GFFs in QCD from earlier this talk

Conclusion

First lattice calculation of:

complete flavor decomposition of nucleon GFFs total GFFs \rightarrow physical (i.e. RGI) densities, radii D(0)

New first-principles descriptions of size and shape of nucleon

Results can help discriminate between different experimental extractions

Towards a precision calculation, need:

Multiple ensembles to take continuum, physicalmass limits

Improved renormalization (GIRS? Flow? Sum rules?) Better methods to control excited state effects

Glueballs WIP

