BARYON ASYMMETRY FROM A SCALE HIERARCHY

Based on arXiv:2401.13734 with Kwang Sik Jeong, Chang Hyeon Lee, and Chang Sub Shin

Jae Hyeok Chang Fermilab and UIC

02/15/2024 Particle Theory Seminars, Fermilab

INTRODUCTION

Matter-Antimatter Asymmetry

Matter-Antimatter Asymmetry Matter **Antimatter** Antimatter $Y_B \equiv$ \bar{n}_B \overline{S} $=\left(0.82 - 0.92\right) \times 10^{-10}$ Early Universe

Too big or Too small? $Y_B \equiv$ \bar{n}_B \overline{S} $= (0.82 - 0.92) \times 10^{-10}$ Γ oo Big \longrightarrow Too Small If it comes from SM SM CPV is too small to get $Y_R \sim 10^{-10}$ • Need new physics If it comes from New physics • Expect $Y_B \sim \frac{1}{a}$ g_{*} $\mathcal{O}(1)$ • Need small couplings or large wash-out effects

Previous baryogenesis models

- **Electroweak baryogenesis** Kuzmin, Rubakov and Shaposhnikov, 1985 $Y_B \propto \Gamma_{\rm sp}/T^4 \sim 20 \alpha_W^5 \sim 10^{-6}$
- Thermal leptogenesis Fukugita and Yanagida, 1986

$$
Y_B \propto \epsilon = \frac{\Gamma(N_1 \to lh) - \Gamma(N_1 \to \overline{lh})}{\Gamma(N_1 \to lh) + \Gamma(N_1 \to \overline{lh})} \sim y_v^2 \frac{M_1}{M_2} \sim 10^{-7}
$$

• WIMPy baryogenesis Cui et al, 1112.2704, 1212.2973

$$
Y_B \propto Y_{WIMP} \sim Y_{eq}(x = 15) \sim \exp(-15) \sim 10^{-8}
$$

A novel way to get a small number

- Two fundamental mass scales in nature
	- The reduced Planck mass : $M_P = (8\pi G)^{-1/2} = 2.4 \times 10^{18}$ GeV
	- $\, \circ \,$ The electroweak scale : $\nu = \left(\mathit{G}_{F} \sqrt{2} \right)^{-1/2} = 246 \; \text{GeV}$
- We propose a model that gives the baryon asymmetry from a hierarchy of these two scales

$$
Y_B \propto \sqrt{\frac{v}{M_P}} = \sqrt{\frac{246 \text{ GeV}}{2.4 \times 10^{18} \text{ GeV}}} = 10^{-8}
$$

Neutrino-Portal Affleck-Dine Baryogenesis

Neutrino-Portal Affleck-Dine Baryogenesis

- We have ϕ , an AD field that carries a $B L$ number
- If the AD mechanism happens during the radiation-dominated era, we get

$$
Y_{\phi} = \mathcal{O}(0.01) \sqrt{\frac{m_{\phi}}{M_P}}
$$

Neutrino-Portal Affleck-Dine Baryogenesis

- We have ϕ , an AD field that carries a $B L$ number
- If the AD mechanism happens during the radiation-dominated era, we get

$$
Y_{\phi} = \mathcal{O}(0.01) \sqrt{\frac{m_{\phi}}{M_P}}
$$

• If $V(\phi)$ ⊃ $m_{\phi}^2 |\phi|^2$ is radiatively stable due to the same mechanism for Higgs boson, we can expect

$$
m_{\phi} \sim \nu \quad \Rightarrow \quad Y_{\phi} \sim 10^{-10}
$$

- All the asymmetry of ϕ transfers to B and L sector through the neutrino portal and the weak sphaleron process
- The model predicts a relic Majoron, with \sim keV mass and \sim ν decay constant, which contributes to $\Delta N_{\rm eff}$

REVIEW OF AD BARYOGENESIS

Based on "A mini review on Affleck–Dine baryogenesis" by Rouzbeh Allahverdi and Anupam Mazumdar, 2012

Scalar Potential

$$
V = (m_{\phi}^{2} - \kappa_{H} H^{2})|\phi|^{2} + \frac{\kappa^{2}}{M_{P}^{2}}|\phi|^{6} - \alpha m_{\phi} \frac{\kappa}{4M_{P}}(\phi^{4} + \phi^{*4})
$$

• ϕ is a supersymmetric flat direction with a global $U(1)$ symmetry

Scalar Potential

$$
V = (m_{\phi}^{2} - \kappa_{H}H^{2})|\phi|^{2} + \frac{\kappa^{2}}{M_{P}^{2}}|\phi|^{6} - \left(\alpha m_{\phi} \frac{\kappa}{4M_{P}}(\phi^{4} + \phi^{*4})\right)
$$

- ϕ is a supersymmetric flat direction with a global $U(1)$ symmetry
- \bullet $U(1)$ is explicitly broken by the Planck suppressed operators in the superpotential

$$
W = \frac{\kappa}{4M_P} \phi^4, \qquad V = \left[\frac{\partial W}{\partial \phi} \right]^2 - \left(\alpha m_{\phi} W + h.c. \right)
$$

king ng scale
"

 $\overline{301}$ $\overline{101}$ $\overline{901}$ $\overline{901}$ $U(1)$ breaking scale $U(1)$ breaking scale

Scalar Potential

$$
V = (m_{\phi}^{2} - \left[\kappa_{H}H^{2}\right)]\phi|^{2} + \frac{\kappa^{2}}{M_{P}^{2}}|\phi|^{6} - \alpha m_{\phi} \frac{\kappa}{4M_{P}}(\phi^{4} + \phi^{*4})
$$

- ϕ is a supersymmetric flat direction with a global $U(1)$ symmetry
- \bullet $U(1)$ is explicitly broken by the Planck suppressed operators in the superpotential

$$
W = \frac{\kappa}{4M_P} \phi^4, \qquad V = \left| \frac{\partial W}{\partial \phi} \right|^2 - \left(\alpha m_\phi W + h.c. \right)
$$

The Hubble induced mass term comes from the Kähler potential,

$$
\frac{\rho}{M_P^2} |\phi|^2 \Rightarrow \kappa_H H^2 |\phi|^2
$$

Affleck-Dine Mechanism

Affleck-Dine Mechanism

$$
V(r,\theta) = \frac{1}{2} \left(m_{\phi}^2 - \kappa_H H^2 \right) r^2 - \frac{\kappa \alpha m_{\phi}}{8M_P} r^4 \cos 4\theta + \frac{\kappa^2 r^6}{8M_P^2} + \cdots \quad \left(\phi = \frac{1}{\sqrt{2}} r e^{i\theta} \right)
$$

Net number density of ϕ is \bullet

$$
\bar{n}_{\phi} = i(\dot{\phi}^* \phi - \phi^* \dot{\phi}) = r^2 \dot{\theta}
$$

- Generation of angular momentum gives \bullet the asymmetry of ϕ
- AD mechanism happens during early-MD because the thermal potential $\lambda T^2 r^2$ spoils the scalar dynamics
- Final asymmetry depends on the reheating \bullet temperature $T_{\rm rh}$

NEUTRINO-PORTAL AFFLECK-DINE MECHANISM

What's the difference?

$$
V(r,\theta) = \frac{1}{2} \left(m_{\phi}^2 - \kappa_H H^2 \right) r^2 - \frac{\kappa \alpha m_{\phi}}{8M_P} r^4 \cos 4\theta + \frac{\kappa^2 r^6}{8M_P^2} + \cdots \quad \left(\phi = \frac{1}{\sqrt{2}} r e^{i\theta} \right)
$$

AD mechanism happens during the radiation-dominated era

$$
H \sim \frac{T^2}{M_P} \Rightarrow T_{AD} \sim \sqrt{m_{\phi}M_P} \sim 10^{10} \text{ GeV}
$$

\n
$$
\langle r \rangle \sim \sqrt{HM_P} \sim T \Rightarrow r(T_{AD}) \sim \sqrt{m_{\phi}M_P}
$$

\n
$$
\phi \sim m_{\theta}^2/H \sim \frac{1}{H} \frac{m_{\phi}}{M_P} \langle r^2 \rangle \sim m_{\phi}
$$

\n
$$
V_{\phi} = \frac{\bar{n}_{\phi}}{s} \sim \frac{r^2 \dot{\theta}}{g_* T^3} \sim \frac{1}{g_*} \sqrt{\frac{m_{\phi}}{M_P}} \sim 10^{-10}
$$

\n
$$
V(r) = 0.5
$$

\n
$$
V(r) = 0.5
$$

\n
$$
V(r) = 0.5
$$

\n
$$
H \gg m
$$

\n
$$
H \gg m
$$

 \boldsymbol{r}

More precisely

 \bullet The analytic expression for $Y_{\bm{\phi}}$ can be calculated from the equation of motion of Y_{ϕ} ,

$$
\frac{dY_{\phi}}{dt} = -\frac{1}{s}\frac{\partial V}{\partial \theta} = -\frac{1}{s}\frac{\kappa \alpha m_{\phi}}{2M_P}r^4 \sin 4\theta
$$

- To integrate the e.o.m over t analytically with some assumptions
	- ∘ $H > m_{\phi}$: $r(t) = \langle r \rangle = \left(\frac{4\kappa_H}{3\kappa^2}\right)$ $3\kappa^2$ $1/4$ HM_P and $\theta(t) = \theta_{\text{in}}$
	- [○] $H < m_{\phi}$: $r(t) = \langle r(t_*) \rangle a^{-3/2} \cos(m_{\phi}(t t_*))$ and $\theta(t) = \theta_{\text{in}}$ near maxima (t_* is the time at $H = m_{\phi}$)

More precisely

 \bullet The analytic expression for $Y_{\bm{\phi}}$ can be calculated from the equation of motion of Y_{ϕ} ,

$$
\frac{dY_{\phi}}{dt} = -\frac{1}{s}\frac{\partial V}{\partial \theta} = -\frac{1}{s}\frac{\kappa \alpha m_{\phi}}{2M_P}r^4 \sin 4\theta
$$

- To integrate the e.o.m over t analytically with some assumptions
	- ∘ $H > m_{\phi}$: $r(t) = \langle r \rangle = \left(\frac{4\kappa_H}{3\kappa^2}\right)$ $3\kappa^2$ $1/4$ HM_P and $\theta(t) = \theta_{\text{in}}$
	- [○] $H < m_{\phi}$: $r(t) = \langle r(t_*) \rangle a^{-3/2} \cos(m_{\phi}(t t_*))$ and $\theta(t) = \theta_{\text{in}}$ near maxima (t_* is the time at $H = m_{\phi}$)
- The final analytic result is

$$
Y_{\phi} = -0.1\alpha \frac{\kappa_H}{\kappa} \sin 4\theta_{\rm in} \left(\frac{200}{g_*}\right)^{\frac{1}{4}} \sqrt{\frac{m_{\phi}}{M_P}}
$$

• With $g_* = 200$ and $\mathcal{O}(0.1 - 1)$ coefficients, we get $Y_{\phi} \sim 10^{-10}$

Comparison with numerical results

Another difference

- ϕ cannot be MSSM flat directions
	- MSSM flat directions couple to SM with the SM Yukawa couplings
	- \circ In RD, ϕ easily thermalizes with SM bath and develop the thermal potential $(\lambda T^2 r^2)$, which spoils the AD mechanism
	- AD mechanism needs to happens during the early matter-domination
- We use the neutrino-portal: $y_\nu \ell hN + \frac{1}{2} \lambda_N \phi N^2$
	- ϕ is a new degree of freedom
	- ϕ was decoupled with the SM bath due to the small Yukawa coupling
	- Initial abundance is negligible and does not develop thermal potential
	- ϕ is thermalized with the SM bath through a right-handed neutrino N much later than the AD mechanism happens

Neutrino-Portal Affleck-Dine Mechanism

$$
W = y_v \ell hN + \frac{1}{2} \lambda_N \phi NN + \frac{\kappa}{4M_P} \phi^4 + \cdots
$$

- N is a right-handed neutrino with $B-L=1$
- ϕ carries $B-L=-2$
- Global $U(1)_{B-L}$ only allows the seesaw operators
- $U(1)_{B-I}$ breaking term arises from quantum gravity effects
- Asymmetry of ϕ transfers to the lepton sector through N
- Asymmetry of the baryon sector is induced form the weak sphaleron process

Cosmological History

ASYMMETRY TRANSFER

Thermalization of

$$
\mathcal{L} \supset \overline{N} i \overline{\sigma}^{\mu} \partial_{\mu} N - \left(y_{\nu} \ell h N + \frac{1}{2} \lambda_N \phi N N + h.c. \right)
$$

The production rate of N from the SM bath

Besak and Bodeker, 1202.1288 Garbrecht, Glowna, and Schwaller, 1303.5498 Ghisoiu and Laine, 1411.1765

• We need $T_{AD} > T_N > T_{SD}$ \Rightarrow weak scale $\langle \phi \rangle$ works well

Thermalizaion of ϕ and Asymmetry transfer

$$
\mathcal{L} \supset \overline{N} i \overline{\sigma}^{\mu} \partial_{\mu} N - \left(y_{\nu} \ell h N + \frac{1}{2} \lambda_N \phi N N + h.c. \right)
$$

- We assume $\lambda_N \sim \mathcal{O}(1)$
	- ϕ thermalizes with the SM bath as soon as N thermalizes
	- \circ Asymmetry of ϕ transfers to the lepton sector
- Asymmetry transfers to baryon sector through the weak sphaleron process

$$
\mu_{\phi} = 2\mu_L = -2\mu_B
$$

• After ϕ decays, the asymmetry of ϕ $(B - L = -2)$ evenly distributed to leptons and baryons

 $Y_B = -Y_L = -Y_{\phi,in}$

The sphaleron process ceases at $T_{SD} \approx 132$ GeV, and Y_B freezes out

LATE-TIME PHENOMENOLOGY

Cosmological History

Late-time Scalar Potential

$$
\Delta V = \left(\lambda_N^2 |\phi|^2 - m_{\widetilde{N}}^2\right) |\widetilde{N}|^2 + \left(\frac{\alpha \lambda_N m_\phi}{2} \phi \widetilde{N}^2 + h.c.\right) + \frac{\lambda_N^2}{4} |\widetilde{N}|^4
$$

• We have one more scalar in the model: \widetilde{N} (a superpartner of N)

Late-time Scalar Potential

$$
\Delta V = \left(\lambda_N^2 |\phi|^2 - m_{\widetilde{N}}^2\right) |\widetilde{N}|^2 + \left(\frac{\alpha \lambda_N m_\phi}{2} \phi \widetilde{N}^2 + h.c.\right) + \frac{\lambda_N^2}{4} |\widetilde{N}|^4
$$

- We have one more scalar in the model: \widetilde{N} (a superpartner of N)
- We assume \widetilde{N} also has a weak scale mass, but with a negative mass-
squared
- In the early time $\langle \phi \rangle \gg m_{\tilde{N}}$, \tilde{N} is trapped at the origin
- Late-time when $\langle \phi \rangle$ drops below $m_{\tilde{N}}$, scalar fields get vev, and $U(1)_{B-I}$ is spontaneously broken.

• Assuming
$$
m_{\widetilde{N}} \sim m_{\phi}
$$
, $\langle \phi \rangle \sim \frac{\alpha m_{\phi}}{\lambda_N}$ and $\langle \widetilde{N} \rangle \sim \frac{m_{\phi}}{\lambda_N}$

Majoron

 \bullet Majoron J is a pseudo-Nambu-Goldstone boson associated with $U(1)_{B-L}$

$$
\mathcal{L}_{\text{eff}} = \frac{1}{2} (\partial_{\mu}J)^{2} - \frac{1}{2} m_{J}^{2}J^{2} - \frac{1}{2} \left(\frac{m_{\nu}}{f_{J}} J \nu \nu + h.c. \right)
$$
\n
$$
m_{J} \sim f_{J} \sqrt{\frac{\alpha m_{\phi}}{M_{P}}} \sim O(0.1 - 1) \text{keV} \left(\frac{f_{J}}{100 \text{GeV}} \right) \qquad \text{V(4)}
$$
\n
$$
f_{J} = \sqrt{4r_{\phi}^{2} + r_{N}^{2}} \sim m_{\phi}
$$
\n
$$
T_{J} (J \rightarrow \nu \nu) = \frac{m_{J}}{16 \pi f_{J}^{2}} \sum m_{\nu}^{2}
$$
\nBoth baryon asymmetry and m_{J} .\n
$$
\text{Re}(4) \qquad J
$$
\n
$$
\text{L} \left(\frac{J}{J} \right) \qquad \text{L} \left(\frac{J
$$

come from the $U(1)_{B-L}$ breaking term

 $8M_P$

 r^4 cos 4 θ

Majoron Contribution to $\Delta N_{\rm eff}$

- Majorons decouples with the SM bath at $T = T_d \sim 0.1 \ m_N$
- Depending on the decoupling time, $\Delta N_{\rm eff}$ contribution is

$$
\Delta N_{\rm eff} = \frac{4}{7} \left(\frac{11}{4} \frac{g_{*,S}(T_0)}{g_{*,S}(T_d)} \right)^{4/3}
$$

 However, the Majoron can be non-relativistic before it decays. The energy density of non-relativistic matter redshifts slowly, so

$$
F_{\rm NR} \approx \frac{m_J}{T_{J,\text{decay}}} \approx \left(\frac{g_{*,S}(T_0)}{g_{*,S}(T_d)}\right)^{-1/3} \frac{m_J}{T_{\text{decay}}}
$$

should be included:

$$
\Delta N_{\text{eff}} = \frac{4}{7} \left(\frac{11}{4} \frac{g_{*,S}(T_0)}{g_{*,S}(T_d)} \right)^{4/3} \max[1, F_{\text{NR}}]
$$

ΔN_{eff} Constraints and future sensitivities

ΔN_{eff} Constraints and future sensitivities

ΔN_{eff} Constraints and future sensitivities

DISCUSSION

Reheating Temperature $T_{\rm rh}$

- $T_{\rm rh}$ needs to be higher than T_{AD}
- But it cannot be much higher
- Constraints from isocurvature perturbations
- \bullet ϕ before AD has negative damping if there's a displacement from the fixed point
- We use $T_{\rm rh} \gtrsim T_{AD}$ to avoid these issues

Role of SUSY

- All the results I mentioned yield consistent results as long as we have the same scalar potentials
- SUSY is not necessary, but it's a good tool for organizing scalar potentials
	- e.g. ϕ has a flat direction naturally $(\lambda | \phi|^4)$ term doesn't appear)
- With all the superpartners, we have another observable
	- The lightest neutrino should be very light
	- ∘ $m_{\text{light}} \sim \frac{m_N}{M_D}$ M_{P} $\sum m_{\nu}$
	- We leave this for future work as it is model-dependent

Summary

 We propose a baryogenesis model where baryon asymmetry arises directly from a scale hierarchy between the weak scale and the Plank scale:

$$
Y_B = \mathcal{O}(0.01) \sqrt{\frac{\nu}{M_P}}
$$

- The model is based on Neutrino-Portal Affleck-Dine mechanism, where AD mechanism happens in RD
- The model predicts a relic Majoron with a keV mass and a weak scale decay constant
- This relic Majoron contributes to $\Delta N_{\rm eff}$ and the allowed parameter space agrees with the theoretical prediction
- All allowed parameter space can be probed by near-future CMB observations

THANK YOU