

Nonlinear Integrable Optics (NIO) in IOTA Run 4

John Wieland on behalf of NIO collaboration IOTA/FAST Collaboration Meeting March 12, 2024

Overview

- NIO Motivation
- Run 4 Experimental Goals
- Turn-By-Turn Measurements
 - Detuning
 - Invariant Conservation
- Dynamic Aperture Measurements
 - Sextupole optimization
- Large-t Beam Profiles

Nonlinear Integrable Optics Motivation

- Contemporary lattices are mostly linear elements
- Real world extra nonlinearities shrink area of stable motion
 - Magnet Imperfections
 - Chromaticity
 - Higher order multipoles

- To ensure stability, we rely on external damping or bunch Landau Damping
- Motivates search for nonlinear integrable potential realizable as magnetic optics
 - All phase space trajectories bounded
 - Amplitude dependent detuning, a condition for Landau Damping of the bunch
- IOTA constructed to evaluate practicality of NIO implementation

IOTA NIO System

- V. Danilov and S. Nagaitsev (**DN**) discovered three integrable potentials IOTA implements the elliptic potential [1]
- Two important parameters
 - t, nonlinear strength parameter, t = 0.5 corresponds to vertical integer resonance
 - c, nonlinear geometric parameter, corresponds to analytic discontinuities in potential

🚰 Fermilab

IOTA NIO Electron Program

- Using 150 MeV electrons from FAST superconducting linac with low emmitance we can approximate single particle dynamics
- Two stripline kickers, one horizontal, one vertical can be used to excite coherent transverse oscillations with tunable amplitudes
- Instrumented with 21 button BPMs for turn-by-turn beam centroid information

Preceding NIO Runs

- Run 1: August 2018 April 2019
 - 100 MeV operation
 - Dominated by commissioning and its associated challenges
- Run 2: November 2019 March 2020
 - 100 MeV operation
 - Early Shutdown March 20, 2020
- Run 4: April October 2023
 - IOTA as designed : 150 MeV operation, full complement of sextupoles and diagnostics

Experimental Goals

- 1. Demonstrate large amplitude dependent tune shifts without degrading dynamic aperture
- 2. Measure theoretically predicted invariants of motion
- 3. Determine robustness of NIO systems against perturbations and imperfections
- 4. Verify the transverse profiles near and beyond the integer resonance agrees with the predicted phase space topology

NIO Lattice Requirements

- Danilov-Nagaitsev NIO system places strict requirements on the lattice
 - Integer phase advance across the matching section, 0.3 across nonlinear insert
 - Centered orbit, zero dispersion and correct beta function in nonlinear insert
 - Minimal transverse coupling and small matched chromaticity
- Tune adjusted manually to nominal condition day-by-day

Lattice Parameter	Design Target	Run 4 Calibration
Phase Advance Errors	0.001	0.001(5)
Dispersion	1 [cm]	0.5(2) [cm]
Closed Orbit in Insert	50 [µm]	40(5) [µm]
Beta Function at Insert	1%	2%
Beta Beating	3%	2%

DN Detuning Calibration

- Calibrate nonlinear element t-scaling by measuring small amplitude tunes
- Used minimal resolvable amplitude kicks for tune measurements

DN Amplitude Dependent Detuning

- Singular Value Decomposition applied to turn by turn data for all 21 BPMs
- Apply NAFF algorithm to principle SVD modes to measure fractional tune
- Constrained by nonlinear decoherence

DN Detuning

Invariant Reconstruction

• Simple in principle – Substitute into theoretical expressions for invariants

$$H = \frac{1}{2} \left[p_x^2 + p_y^2 + x^2 + y^2 \right] - t \operatorname{Re} \left(\frac{z}{\sqrt{1 - z^2}} \operatorname{arcsin}(z) \right)$$
$$I = (xp_y - yp_x)^2 + p_x^2 + x^2 - t \operatorname{Re} \left(\frac{x}{\sqrt{1 - z^2}} \operatorname{arcsin}(z) \right)$$

- Need to extract 4-D position from turn by turn data
- Complicated by Decoherence apparent reduction in coordinate

4-D Position Reconstruction

• Use linear transfer maps to reconstruct 4-D position at a virtual BPM location turn by turn

Invariant Conservation

2.00

Courant-Snyder Hamiltonian 1.25 1.00 0.75 0.20

0.00

- · Look at variance before decoherence
- No indication of superior nonlinear invariant conservation to the Courant-Snyder invariant for identical reconstructed coordinates yet

t=0.380

150

50

100

Turn

0

Dynamic Aperture

- Performed spoke scans to efficiently probe dynamic aperture
- Kicked to increasing amplitudes while monitoring beam current via DCCT

Kicker-Amplitude Calibration

- · Correspond kicker amplitude with physical amplitude of beam
- Fitted directly from experimental BPM data in the same manner as momentum reconstruction

DA vs t

NIO System Perturbations

- Sextupole Configurations
 - No Sextupoles, i.e. uncorrected natural chromaticity
 - Corrected chromaticity, minimum sextupole families
 - Bayesian optimized sextupole configuration
- Linear Lattice Configurations
 - Phase advance in the nonlinear insert
 - Beta star position in the nonlinear insert
 - Dispersion in the nonlinear insert
 - Overall lattice tune

Sextupole Optimization

Beam Profiles

- Synchrotron radiation measurements of the beam profile for varying the t-parameter of the DN insert beyond t=0.5
- Corresponds to zero amplitude detuning beyond the vertical integer resonance

Next Steps

- Continued Electron Data Analysis
 - Refine invariant conservation measurements, consider alternative methods
 - Beam profile analysis with nonlinear potential
 - Publication this year on NIO electron studies in Run 04
- Proton Studies in NIO
 - IOTA proton commissioning
 - NIO studies with intense proton beam

Thank You

- NIO Collaborators: Sasha Valishev, Sergei Nagaitsev, Sasha Romanov, Nikita Kuklev, Sebastian Stuzkowski, Giulio Stancari, Jonathan Jarvis
- Fermilab Support: Dan Brommelsiek, Chip Edstrom, Kermit Carlson, Steve Daley, Jinhao Ruan, Daniel Maclean, Trey Thompson, Jamie Santucci, Dave Franck, Nathan Eddy, Bobby Santucci, and many more

Citations

[1] Danilov, V., and S. Nagaitsev. "Nonlinear Accelerator Lattices with One and Two Analytic Invariants." Physical Review Special Topics - Accelerators and Beams 13, no. 8 (August 25, 2010): 084002. https://doi.org/10.1103/PhysRevSTAB.13.084002.

[2] Photo Credit: Giulio Stancari

[3] Photo Credit: Aleksandr Romanov

