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Nonlinear Integrable Optics (NIO) in IOTA Run 4



• NIO Motivation

• Run 4 Experimental Goals

• Turn-By-Turn Measurements

– Detuning

– Invariant Conservation

• Dynamic Aperture Measurements

– Sextupole optimization

• Large-t Beam Profiles

Overview
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• Contemporary lattices are mostly linear elements

• Real world extra nonlinearities shrink area of stable motion

– Magnet Imperfections

– Chromaticity

– Higher order multipoles

• To ensure stability, we rely on external damping or bunch Landau Damping

• Motivates search for nonlinear integrable potential realizable as magnetic optics

– All phase space trajectories bounded

– Amplitude dependent detuning, a condition for Landau Damping of the bunch

• IOTA constructed to evaluate practicality of NIO implementation

Nonlinear Integrable Optics Motivation
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IOTA NIO System
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• V. Danilov and S. Nagaitsev (DN) discovered three 

integrable potentials IOTA implements the elliptic 

potential [1]

• Two important parameters

– t, nonlinear strength parameter, t = 0.5 corresponds to 

vertical integer resonance

– c, nonlinear geometric parameter, corresponds to 

analytic discontinuities in potential

x = c
        ∝ t

[2]



• Using 150 MeV electrons from FAST superconducting linac with low emmitance we can 

approximate single particle dynamics

• Two stripline kickers, one horizontal, one vertical can be used to excite coherent transverse 

oscillations with tunable amplitudes

• Instrumented with 21 button BPMs for turn-by-turn beam centroid information

IOTA NIO Electron Program
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• Run 1: August 2018 - April 2019

– 100 MeV operation

– Dominated by commissioning and its associated challenges

• Run 2: November 2019 - March 2020

– 100 MeV operation

– Early Shutdown March 20, 2020

• Run 4: April - October 2023

– IOTA as designed : 150 MeV operation, full complement of sextupoles and diagnostics

Preceding NIO Runs
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1. Demonstrate large amplitude dependent tune shifts without degrading 

dynamic aperture

2. Measure theoretically predicted invariants of motion

3. Determine robustness of NIO systems against perturbations and 

imperfections 

4. Verify the transverse profiles near and beyond the integer resonance 

agrees with the predicted phase space topology 

Experimental Goals
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• Danilov-Nagaitsev NIO system places strict requirements on the lattice

– Integer phase advance across the matching section, 0.3 across nonlinear insert

– Centered orbit, zero dispersion and correct beta function in nonlinear insert

– Minimal transverse coupling and small matched chromaticity

• Tune adjusted manually to nominal condition day-by-day 

NIO Lattice Requirements

Lattice Parameter Design Target Run 4 Calibration

Phase Advance Errors 0.001 0.001(5)

Dispersion 1 [cm] 0.5(2) [cm]

Closed Orbit in Insert 50 [μm] 40(5) [μm]

Beta Function at Insert 1% 2%

Beta Beating 3% 2%
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DN Detuning Calibration
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• Calibrate nonlinear element t-scaling by measuring small 

amplitude tunes

• Used minimal resolvable amplitude kicks for tune 

measurements



• Singular Value Decomposition applied to turn by turn data for all 21 BPMs 

• Apply NAFF algorithm to principle SVD modes to measure fractional tune

• Constrained by nonlinear decoherence

DN Amplitude Dependent Detuning
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• Each point corresponds to a single kick to circulating 

beam with different amplitudes with DN element 

excited to t=0.238

DN Detuning
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• Simple in principle – Substitute into theoretical expressions for invariants

• Need to extract 4-D position from turn by turn data

• Complicated by Decoherence – apparent reduction in coordinate

Invariant Reconstruction
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• Use linear transfer maps to reconstruct 4-D position at a virtual BPM location turn by turn

4-D Position Reconstruction

3/12/2024 John Wieland | NIO in IOTA Run 413

1
21



• Look at variance before decoherence

• No indication of superior nonlinear 

invariant conservation to the Courant-

Snyder invariant for identical 

reconstructed coordinates yet

Invariant Conservation
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• Performed spoke scans to efficiently probe dynamic aperture

• Kicked to increasing amplitudes while monitoring beam current via DCCT

Dynamic Aperture
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• Correspond kicker amplitude with physical amplitude of beam

• Fitted directly from experimental BPM data in the same manner as momentum reconstruction

Kicker-Amplitude Calibration
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DA vs t
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NIO System Perturbations
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• Sextupole Configurations

– No Sextupoles, i.e. uncorrected natural chromaticity

– Corrected chromaticity, minimum sextupole families

– Bayesian optimized sextupole configuration

• Linear Lattice Configurations

– Phase advance in the nonlinear insert

– Beta star position in the nonlinear insert

– Dispersion in the nonlinear insert

– Overall lattice tune 



• Using all 6 families of sextupoles, found the chromatic null space (4 symmetric knobs) and 

implemented Bayesian optimization 

Sextupole Optimization
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Chromatic 
     Harmonic



Beam Profiles
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• Synchrotron radiation measurements of the beam profile for varying the t-parameter of the 

DN insert beyond t=0.5

• Corresponds to zero amplitude detuning beyond the vertical integer resonance



• Continued Electron Data Analysis

– Refine invariant conservation measurements, consider alternative methods

– Beam profile analysis with nonlinear potential

– Publication this year on NIO electron studies in Run 04

• Proton Studies in NIO

– IOTA proton commissioning

– NIO studies with intense proton beam

Next Steps
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• NIO Collaborators: Sasha Valishev, Sergei Nagaitsev, Sasha Romanov, Nikita Kuklev, 

Sebastian Stuzkowski, Giulio Stancari, Jonathan Jarvis

• Fermilab Support: Dan Brommelsiek, Chip Edstrom, Kermit Carlson, Steve Daley, Jinhao 

Ruan, Daniel Maclean, Trey Thompson, Jamie Santucci, Dave Franck, Nathan Eddy, Bobby 

Santucci, and many more

Thank You
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