

Quasi-Isochronous Lattices: LADR & OSC Applications

Mike Wallbank, Jonathan Jarvis (Fermilab) IOTA/FAST Collaboration Meeting, March 2024 3/12/2024

Quasi-Isochronous Lattices

- The momentum compaction factor describes the variation in orbit length wrt the reference for off-momentum particles.
 - Typically considered only as a linear term, but when the linear optics are set to reduce the leading term, higher-order terms will become relevant.

$$\Delta C/C_0 = \alpha_1 \delta + \alpha_2 \delta^2 + \alpha_3 \delta^3 + \dots$$

- (There's also an α_0 term, independent of delta, which depends on betatron motion.)
- The terms are analogous to the betatron case in the longitudinal plane: quadrupoles control α₁ and lead to a 'natural α₂', which can be corrected using sextupoles; α₃ can be controlled using octupoles, etc.
- Lattices which reduce the momentum compaction of the ring to lower than typical values are referred to as 'quasi-isochronous', or 'low-alpha', lattices.
 - The path length taken by particles as they orbit becomes less dependent on the momentum deviations.
 - Analogously, the slip factor is reduced, so the bunch stays temporally closer to the reference particle.

Low Alpha Motivations

- New operational modes enabled by changes to the longitudinal dynamics at low momentum compaction.
 - e.g. The formation of alpha buckets results in larger areas of stable phase.
- **Issues injecting into the Passive-OSC lattice** (low emittance) during the previous stage of the program are suspected to be related to uncompensated higher-order terms of momentum compaction.
 - Attaining a firmer understanding of low-alpha operations at IOTA will ensure these problems are not encountered again.
 - Has generally applicability across many lattices used at IOTA.
- Could be a **gateway to new areas of research or scientific programs** at IOTA, if a low-alpha mode became a standard operational configuration.
 - e.g. Steady-state microbunching, discussed later.

🚰 Fermilab

Alpha Buckets

- Effective control of higher-order compaction terms enables new stables areas of phase space, alpha buckets, by changing the shape and zero-crossings of α(δ).
 - Analogous to regular RF buckets but centered on a non-zero delta and shifted in phase by π.
 - Varying α₂ (typically to ~0) and α₃ allows manipulation of these stable regions of phase space.
- Precise control over these higherorder terms can allow for larger regions of stable phase space for improved injection or storage.

Nature 608, 288 (2022)

Optical Stochastic Cooling

- First demonstrated at IOTA in 2021.
- OSC uses the careful mapping of a particle's radiation on itself following a bypass to apply corrective kicks to its momentum.
 - Each particle will additionally feel 'noise' kicks from each other particle within the bandwidth of the system.
 - Typically hinders cooling and so usually suppressed as much as possible.
- Flexible system enabling cooling, heating and potentially more exotic phase space manipulations in all three dimensions.

Steady-State Microbunching

- The steady-state microbunching (SSMB) concept is a promising application of low-alpha lattices and a highly active area of research.
- Light source combining high rep rate of storage rings with high brightness of FELs, with tunable frequencies potentially as high as the x-ray range.
 - Proposed in 2010 (PRL 105, 154801 (2010)) with a one-turn proof of principle demonstration at the Metrology Light Source published in 2021 (Nature 590, 576 (2021)).
- 'Conventional' SSMB utilizes MW stored laser power synchronized to the beam, which modulates bunch particles at the optical wavelength to produce microstructure.

Optical Stochastic Crystallization

- We have developed a mechanism which may enable SSMB using only the components of an OSC system, with careful control of the light and beam optics.
 - We refer to this as **Optical Stochastic Crystallization** (OSX).
 - Effectively comes 'for free' with OSC.
- The inter-particle interactions within the optical bandwidth can provide, at sufficient gain, a self-reinforcing mechanism which locks the structure at the optical wavelength.
- An OSX system is *cool*: combines the beam cooling of OSC with crystallization and advanced beam control.

OSX Demonstrations

- Currently at the level of **exploring basic feasibility** (similar to the original SSMB proposals).
- A <u>basic 1D toy model</u> of OSC has been used to investigate OSX.
- Requirements:
 - Low compactions (10-4 here);
 - Optical OSC amplification (40 dB here);
 - Matched signs of the slip factors between the OSC by-pass and the rest of the storage ring;
 - Low dispersion invariant \mathcal{H}_x at the undulators to reduce bunch lengthening from betatron motion.

OSX Simulations

- Fundamental mechanism has additionally been validated in ELEGANT using OSC model (PRAB 27, 012801 (2024)) — this slide.
 - 'Quick and dirty' simulation using the Passive-OSC lattice with reduced compaction; same OSC parameters with increased gain.
 - Actively working on a new lattice as part of the amplified OSC program.
- Lots of ongoing work to improve the quality of the simulations.
 - Basic incoherent radiation model with quantum excitation included.
 - Coherent synchrotron radiation and IBS not currently modeled.

Bunch Manipulations

- Various bunch manipulations have also been demonstrated.
 - Plan to incorporate this simulation into a reinforcement-learning model to produce a 'beam-on-demand' system.
- In the *basic model*, crystallization occurs in almost all cases given sufficient cooling.
 - The models imply the required gain, lattice and bunch densities mean a demonstration *may* be feasible during the next phase of OSC at IOTA.
- More from Jonathan in the OSC talk tomorrow!

Low Alpha Demonstration Research (LADR)

- As a first step towards realizing these potential applications, Jonathan and I proposed the LADR program as a short R&D effort focused on demonstrating the feasibility of low-alpha operations of the IOTA ring.
- Goals (taken from <u>my proposal slides</u>):
 - Demonstrate the reduction in the leading-order term, α₁, with the linear optics. Aim to reduce to ~10⁻⁴ (~50 lower than previously used in IOTA).
 - Use online measurements of synchrotron frequency as a proxy for compaction (with an assumed constant synchrotron energy loss from the model).
 - Demonstrate correction of the second-order term, α₂, using sextupoles. Aim to correct this to zero, and demonstrate zero-crossing. Critical for successful low-alpha operation.
 - **Demonstrate control over the third-order term**, α_3 , **using octupoles**. Show the expected effect on lifetime as this is knobbed through zero.
 - **Demonstrate operation of IOTA with alpha buckets**, likely by holding α₃ constant and transitioning particles in a RF bucket as α₁ is knobbed through zero.

$$\Delta C/C_0 = \alpha_1 \delta + \alpha_2 \delta^2 + \alpha_3 \delta^3 + \dots$$

🔁 Fermilab

LADR Operations

- LADR took around 13 shifts in late September / early October, 2023.
- Around half were used commissioning the lattice; the second half were used to work towards the goals of the program.
- Successfully completed the main objectives: demonstrating control over the leading momentum compaction terms (α_1 , α_2 , α_3).
 - Achieved record-low IOTA ring compaction of ~3.4×10⁻⁴ (~15x lower than previously operated).
- Unfortunately the run ended before we could reach the target of 1×10⁻⁴ or attempt to transition to alpha buckets, but nothing was found to suggest this should not be feasible in the future.

LADR Lattice

- The LADR lattice was modified from the NIO version to ensure minimal disruption to the program.
 - Fully characterized in ELEGANT and MAD-X.
 - Developing knobs for varying the compaction.
- Optimized lattice functions at sextupole and octupole locations for efficient control of higher-order terms.
- Achieving stable injection into the lattice proved challenging.
 - Ultimately had to inject via the NIO lattice and transition with beam.
 - Typically injected >1 mA and worked with 300 μ A and below for studies.

Momentum Compaction Measurements

- Used spectrum analyzer attached to wall-current monitor.
- Measure synchrotron frequency from the sidebands over an RF detuning scan; fit for α terms.

$$\begin{split} f_s^2 &= \frac{hq_e V_{rf} f_0^2 |\eta_1 cos \phi_s|}{2\pi \beta_0^2 E_0} \left[1 + \frac{s_1}{\eta_1} \left(\frac{\Delta f_{rf}}{f_r f} \right) + \frac{s_2}{\eta_1^2} \left(\frac{\Delta f_{rf}}{f_r f}^2 \right) \right] \\ s_1 &= -\frac{2\eta_2 - \eta_1^2}{\eta_1} + \frac{1}{\gamma_0^2} \\ s_2 &= \frac{3\eta_3 \eta_1 - 2\eta_2^2}{\eta_1^2} - \frac{\eta_2}{\eta_1 \gamma_0^2} + \frac{3\gamma_0^2 \beta_0^2 + 2}{2\gamma_0^4}, \end{split}$$

🚰 Fermilab

Reducing α_1 **using Linear Optics**

• Reducing the first-order compaction term using knobs built from the model.

😤 Fermilab

Controlling *α*₂ **using Sextupoles: High Compaction**

• The SD1 sextupole family were very effective at controlling and correcting *α*₂ at relatively high momentum compaction.

🚰 Fermilab

 Left: before and after correction at two values of α₁; right: sweeping α₂ through zero via a scan over sextupole excitations.

16 M Wallbank I Quasi-Isochronous Lattices (IOTA/FAST CM, March 2024)

Controlling α_2 and α_3 : Lower Compaction

- Following four applications of the α_1 knob to reach ~1.7×10⁻³.
- It was not possible reduce α_2 as much as before, or to knob through zero.
 - The 'natural' α_3 is negative, which is the opposite to the sign of α_1 . It is understood that to improve lifetime and bunch stability, the signs should be the same; octupoles were therefore henceforth used to correct this.

辈 Fermilab

Achieving Low Compactions

- Strategy is to move down slowly, taking sextupole and octupole scans, correcting as much as possible.
 - Should be possible to use a model to assist.
- Record-low measurement (3.4×10⁻⁴) shown in the orange (lower plot).
 - As observed, a slight reduction causes immediate beam loss due to further uncompensated higher-order terms.
- The path to zero and beyond was clear, we just didn't quite have enough time.
 - No show-stoppers gives us confidence in achieving quasi-isochronous operations in IOTA!

🛟 Fermilab

Summary

- Understanding the beam dynamics in IOTA at lower compactions is generally important for a lot of use-cases.
 - Specifically will be very relevant for a lower emittance lattice such as OSC.
- Additionally opens the possibility of new areas of research at IOTA, such as OSX.
 - Optical Stochastic Crystallization is a potentially very interesting application of OSC, which we are actively working on.
- LADR successfully demonstrated the basic principles of controlling momentum compaction terms in low-alpha lattice at IOTA.

Backups

20 M Wallbank I Quasi-Isochronous Lattices (IOTA/FAST CM, March 2024)

OSX Slip Factors

- Demonstration of the required slip factors.
- Top: RF bucket microbunching.
 - Left: $\alpha_1 > 0$;
 - Right: $\alpha_1 < 0$.
- Bottom: alpha bucket microbunching.
 - Left:

 $\alpha_1 < 0, \ \alpha_2 = 0, \ \alpha_3 > 0.$

• Right: $\alpha_1 > 0, \ \alpha_2 = 0, \ \alpha_3 < 0.$

21 M Wallbank I Quasi-Isochronous Lattices (IOTA/FAST CM, March 20

Squish and Bunch Manipulations

 Turn on OSC with gain to cool, turn off the gain to let the bunch rotate in phase space, turn on again at an opportune time to bunch.

🛟 Fermilab

LADR Lattice & Knobs

- The lattice was designed from the NIO lattice, with the compaction reduced.
 - Reducing compaction requires a net reduction in dispersion around the ring.
 - This is achieved either by balancing out positive and negative contributions in different straights or by enforcing zero-crossing in the bend dipoles.
 - The latter is preferred but was found to be unfeasible with the other constraints on LADR. It's possible an improved low-alpha IOTA lattice could be designed without these self-imposed restrictions.

 $I_1 = \oint \frac{\eta}{\rho} ds$

LADR lattice with $\sim 10^{-2}$ compaction.

Importance of α_3 at Low Compactions

- Plot shows 'nominal' sextupole excitation and ±30%; octupole currents of -0.4 A to ensure a positive α_{3.}
- Positive parabolic shape observed when α₂ is reduced sufficiently.
 - An uncompensated α₃ will therefore come to dominate at lower compactions and will inhibit the ability to stably further reduce the compaction.

Impact of α_2 at Low Compactions

- Blue -> orange: reduce compaction.
- Orange -> green: reduce compaction; second-order term becomes relevant.
- Green -> red: correct second-order term with sextupoles.
- Red -> purple: reduce compaction; secondorder term again becomes relevant.

🛚 🛟 Fermilab