

Fermilab

Noise in Intense Electron Bunches at FAST

S. Kladov⁺, S. Nagaitsev, J. Ruan, A. Lumpkin, R. Thurman-Keup, A. Saewert, D. Broemmelsiek, J. Jarvis, Y.-K. Kim, Z. Huang

Electron-Ion Collider

 High luminosity: L = 10³³ to 10³⁴ cm⁻²sec⁻¹ - a factor 100 to 1000 beyond HERA

	Electrons	Protons
Beam energies	2.5 - 18 GeV	41- 275 GeV
Center of mass energy range	E _{Cm} = 20-140 GeV	
	Electrons	Protons
Beam energies	10 GeV	275 GeV
Center of mass energy	E _{Cm} = 105 GeV	
number of bunches	nb =1160	
crossing angle	25 mrad	
Bunch Charge	1.7·10 ¹¹ e	0.7·10 ¹¹ e
Total beam current	2.5 A	1 A
Beam emittance, horizontal	20 nm	9.5 nm
Beam emittance, vertical	1.2 nm	1.5 nm
β - function at IP, horizontal	43 cm	90 cm
β - function at IP, vertical	5 cm	4 cm
Beam-beam tuneshift, horizontal	0.073	0.014
Beam-beam tuneshift, vertical	0.1	0.007
Luminosity at E _{cm} = 105 Gev	1.10 ³⁴ cm ⁻² s ⁻¹	

Beam Cooling

Transverse momentum energy growth:

Source: longitudinal degree of freedom.

Coupling to transverse degree **processes**:

- Scattering (intra-beam, beam-beam, residual gas)
- Improper bending and/or focusing at injection
- Interaction with beam's environment (e.g. wake fields)
- Space-charge effects
- Secondary and tertiary beams

Necessary: $\langle p_{\perp} \rangle \sim 10^{-4} \langle p_{\parallel} \rangle$

Cooling is a reduction in the phase space occupied by the beam (for the same number of particles)

• The figure of merit – beam emittance

$$\varepsilon_{x,n} = \beta \gamma \left(\left\langle x^2 \right\rangle \left\langle \theta_x^2 \right\rangle - \left\langle x \theta_x \right\rangle^2 \right)^{1/2}$$

$$\theta_x = \frac{p_x}{\beta \gamma M c}$$

Beam Cooling

- At 275 GeV, IBS times are: H/L = 1.5/4 hours
- IBS heating rate scales as $\lambda_{\perp} \sim \frac{1}{\gamma^{1.5}}$

|Thus, the hadron cooling system must provide <u>~1-2 hour horizontal cooling time</u> to prevent emittance blowup and conserve luminosity

• We are calling it <u>Strong Hadron Cooling</u>

Two basic methods employed for hadron cooling today:

Electron cooling – energy exchange

- Many low-energy proton/ion rings.
- Highest hadron beam energy to date 8.9 GeV at Fermilab
- Cooling rate: $\lambda_{\perp} \sim \frac{1}{\gamma^{2.5}}$

Stochastic cooling (1984 Nobel Prize in Physics)

• CERN, Fermilab, GSI, RHIC, etc.

Optical Stochastic cooling

Concept:

Coherent electron cooling with microbunching amplification

- Type of stochastic cooling based on transit time between the modulator and the kicker
- Typical bandwidth of ~40 THz (conventional SC ~10 GHz)
- This is a longitudinal-only cooling scheme. Cooling in x and y requires coupling/sharing of cooling.
- Achievable cooling times of about 1 hour for 275 GeV protons

Electron beam noise

Noise = beam density fluctuations above (Poissonian) **shot noise**, *F* = 1

$$F = \frac{\operatorname{var}(\mathcal{N})}{\langle \mathcal{N} \rangle}$$

Fano factor

We would like to confirm that for the ERL electron bunches F < 2 at $\lambda \sim 3\mu m$

- IMPACT simulation (LBNL): energy spread, emittance, and bunch length matched well to GPT results
- Observed > 250 um modulation with noise amplitude 2x shot noise. It will not be amplified in the cooler.
- 250 um modulation will not affect the diffusion rate
- Current fluctuation through the linac and the merger is close to the shot noise level

Experiment. EIC and FAST

Beam spectrum ↔ Transition Radiation (TR) spectrum

Optical Transition Radiation. Its registration

Data Analysis Flow

Transitions:

- Vacuum window
- Flat and parabolic mirrors
- Filters
- PD responsivity

Pass OTR through the light channel (Theory and Experiment)

Compare voltage $U(\lambda)$ for a set of filters (set of single values)

Discrete Homogeneous Fredholm Integral Equation

$$\int T(n,\lambda) \frac{dI}{d\lambda} d\lambda = U(n)$$

System of integral equations

If filters are <u>narrow-band</u>:

Integrals are easily evaluated → unique solution

In <u>reality</u>:

• Ambiguous, guessed solution

Averaged scope data (voltage) example

OTR power Theory and Experiment comparison. Low noise

$$\frac{\text{Red}}{\text{Gray}} - 1 = N \left| \int \rho(z) \exp\left(iw\frac{z}{c}\right) dz \right|^2$$

$$\int \rho(z) \exp\left(iw\frac{z}{c}\right) dz = \sqrt{\frac{\text{Red}}{\text{Gray}} - 1} \frac{1}{\sqrt{N}} = \frac{\int \rho(z) \exp\left(iw\frac{z}{c}\right) dz}{\int \rho(z) \exp\left(i0\frac{z}{c}\right) dz}$$

Shot-noise:
$$\frac{\int \rho(z) \exp\left(iw\frac{z}{c}\right) dz}{\int \rho(z) \exp\left(i0\frac{z}{c}\right) dz} \approx \frac{1}{1.129 \sqrt{N}}$$

$$F = \sqrt{\frac{\text{Red}}{\text{Gray}} - 1} \frac{1.129}{\sqrt{N}}$$

S. Kladov, A. Lumpkin, J. Ruan, R. Thurman-Keup, A. Saewert et al.

Bunch compression

Elevated noise

S. Kladov, A. Lumpkin, J. Ruan, R. Thurman-Keup, A. Saewert et al.

Simulations

٠

S. Kladov, A. Lumpkin, J. Ruan, R. Thurman-Keup, A. Saewert et al.

Gain plot (with initial distortion) shows the same

Next steps

Data analysis:

- Fit the elevated noise automatically
- Fit the vacuum window transmission lower edge

Simulations

- Regular tracking: Beam length vs cc2 phase for the high energy channel
- Microbunching: Increase accuracy and compare with other tools like GPT

Experiment:

- Perform the experiment with ultimate control of the beam size
- Create additional measurement stations in the high energy line
- Try other filters / neutral density filters to improve the data

S. Kladov, A. Lumpkin, J. Ruan, R. Thurman-Keup, A. Saewert et al.

End of slide show, click to exit.

Thank you! Questions time.

EIC features

- Large range of center-of-mass energies E_{cm}= 29 to 140 GeV/u
- Polarized beams with flexible spin patterns
- Favorable condition for detector acceptance such as p_T =200 MeV/c
- Large range of hadron species: protons Uranium
- Collisions of electrons with polarized protons and light ions (³He, d,...)

Possible discrepancy in beam length experiment vs simulation explanation

-20

-5

Signal fluctuations measurements