

Northern Illinois University

High-Efficiency and Low-Emittance Electron Sources

Oksana Chubenko (Northern Illinois University)

Jared Maxson (Cornell University)

Introduction

chubenko@niu.edu

03/14/2024

Beam Production

Optimal outcome: Methods for x100 brighter electron sources through better photocathodes, enabling better X-ray sources, colliders and electron imaging.

Introduction

Capabilities of accelerator applications are limited by capabilities of electron sources!

Metal vs. semiconductor photocathodes

chubenko@niu.edu

All next-generation electron linear accelerators (XFELs and colliders alike) plan the use of high-QE semiconductor photocathodes. The three main choices in use today are:

GaAs:Cs	Cesium Telluride	Alkali Antimonides
 Go-to polarized electron source (Jlab's CEBAF, SLAC, BNL's EIC) Extremely vacuum sensitive (DC guns only, < 10⁻¹⁰ Torr) Percent-level QE in green (520-530 nm) MTE ≈ 120 meV (or 0.48 um/mm rms) in green 	 Vacuum sensitive (< 10-9 Torr), but less so than alkali antimonides and GaAs:Cs Well-tested in high RF fields (FAST, PITZ, EU-XFEL) Percent-level QE in UV (~260 nm) High work function good for dark current Adds significant laser complexity MTE ≈ 500 meV (or 1 um/mm rms) in UV Non-monotonic MTE due to presence of low-threshold compounds 	 Vacuum sensitive (< 10⁻¹⁰ Torr) Percent-level QE in green (520-530 nm) MTE ≈ 130 meV (or 0.5 um/mm rms) in green In use at BNL QWR SRF gun, planned for LCLS-II-HE low emittance injector (> 30 MV/m) Very few tests in high-field RF guns (many tests in DC guns) Multiple species to choose from Cs-Sb, Cs-K-Sb, Na-K- Sb,
	2	

Cesium-antimonide photocathodes:

- can be easily deposited through thermal evaporation at moderate temperatures
- photoemit in a visible wavelengths range

Cesium-antimonide photocathodes demonstrate thermal-limit MTE and relatively high QE at photoemission threshold.

Cesium-antimonide films grown on lattice-matched single crystal strontium titanate (STO) substrates demonstrate roughness-induced MTE < 10 meV even at large applied fields.

Saha, Chubenko et al, Appl. Phys. Lett. 120, 194102 (2022).

Oksana Chubenko

chubenko@niu.edu

03/14/2024

Disordered crystal structure can limit MTE!

RHEED images of an annealed SiC substrate and a 10 u.c. Cs3Sb film.

First-to-date demonstration of epitaxial growth of cesium-antimonide films on lattice-matched single crystal SiC substrates.

Parzyck et al, Phys. Rev. Lett. 128, 114801 (2022).

Sodium-potassium-antimonide photocathodes

Alkali antimonides achieve as low as ~30 meV (shown below: Na-K-Sb, min MTE of 35 meV) with photon energy

03/14/2024

chubenko@niu.edu

Na-K-Sb photocathodes demonstrate thermal-limit MTE and relatively high QE at photoemission threshold.

Maxson et al, Appl. Phys. Lett. 106, 234102 (2015)

Oksana Chubenko

Testing alkali-antimonide photocathodes in accelerators

Oksana Chubenko

chubenko@niu.edu

03/14/2024

Alkali-antimonide photocathodes (Cs-Sb, Na-K-Sb):

- Low MTE 🔽
- High QE 🛛 🗸
- Thin films \rightarrow prompt response time \checkmark
- Robustness + long operational lifetime under realistic photoinjector conditions

Testing alkali-antimonide photocathodes in accelerators

Oksana Chubenko

chubenko@niu.edu

03/14/2024

Previous experience:

- many tests in DC guns
- very few tests of bialkali-antimonides in high field RF/SRF guns; no tests of Cs-Sb
- CBB efforts: testing Cornell-grown photocathodes at UCLA
 - UCLA's Pegasus is compatible with Cornell's photocathode growth system.
 - (Relatively) successful deployment of photocathode grown at Cornell to UCLA: beam delivered with multiple orders of magnitude higher QE than baseline Cu photocathode.
 - Due to long transit time from NY \rightarrow CA, the cathode suffers QE degradation below percent level in the suitcase.

Oksana Chubenko

chubenko@niu.edu

03/14/2024

CBB Strategic Plan:

Deliverable 2.1 (Priority): Photocathode that can operate for >1 week with MTE <35 meV at 50 μ J/cm² laser fluence and high field (>50 MV/m) for high peak current applications such as XFELs (**Summer 2025**)

We propose to grow alkali-antimonide photocathodes and test them at FAST facility.

Testing alkali-antimonide photocathodes at FAST

Oksana Chubenko

chubenko@niu.edu

03/14/2024

FAST electron injector:

- Photoinjector-based 1.3 GHz SRF linear accelerator.
- Production of 150 MeV electrons for IOTA ring.
- Main facility electron gun.
- Cs-Te-coated Mo photocathode.
- INFN-type photocathode plug.

Alkali-antimonide growth capabilities: Cornell University

chubenko@niu.edu

Cornell photocathode growth system:

- Used to grow Na-K-Sb films. Other compounds also possible.
- Uses INFN-type photocathode plug.
- Cornell also has an INFN-style suitcase system for vacuum transfer (also compatible with FAST).

NEG and ion pump achieve pressure below 1e-10 torr

Collection grid diagnostic for QE measurements chubenko@niu.edu

03/14/2024

NIU photocathode growth system:

- Was previously used to grow Cs-Te at Fermilab.
- Uses old INFN-type photocathode plug.

Old INFN-type plug

Alkali-antimonide growth capabilities: FAST

Oksana Chubenko

chubenko@niu.edu

03/14/2024

FAST photocathode growth system:

- Used to grow Cs-Te films.
- Can be easily modified to grow Cs-Sb films.

Picture courtesy Jamie Santucci

Testing alkali-antimonide photocathodes at FAST

Oksana Chubenko

03/14/2024

Tasks:

- Mechanical compatibility checks (not required if photocathode grown at FAST)
- Develop/deploy thermal emittance measurement capability (solenoid scans)
 - ➢ First emittance measurements can be done with existing Cs-Te cathodes (expect MTE ≈ 500 meV with ≈ 300 nm emittance)
- Demonstrate successful transfer of CBB-grown cathodes
- Possibility of wavelength tuning for testing CBB cathodes (emittance + lifetime at ≥ 50 MV/m)
 - ➢ Initial tests can be performed with UV (266 nm, already set up)
 - ➢ Possibility of converting drive laser to green (527 nm) (expect MTE ≈ 130 meV with ≈ 150 nm emittance)
 - Possibility of generating near-threshold light (~650 nm) to minimize emittance (alternatively, test new compounds that may have low MTE in the green).
- Possibility of testing CBB films grown on SC substrates (SiC) (expect MTE ≈ 40 meV at threshold)
 - Plug modification
 - Compatibility of semiconductor with gun environment

Testing alkali-antimonide photocathodes at FAST

Oksana Chubenko

chubenko@niu.edu

03/14/2024

Comments and questions welcome:

Oksana Chubenko (chubenko@niu.edu)

Jared Maxson (jmm586@cornell.edu)