

Proton Beam Diagnostics

Randy Thurman-Keup, Nathan Eddy, Aisha Ibrahim, Henryk Piekarz, Vic Scarpine, Arden Warner IOTA/FAST Collaboration Meeting 2024 March 13, 2024

Proton Beam Diagnostics

IOTA Beam Position Monitors

- BPM pickups in IOTA are 11mm button electrodes
 - To first order an 11mm stripline
 - Great for very short (few *ps*) bunches in FAST Linac
 - Stored bunch in IOTA ~700 ps

3

Installed high-Z preamps & 30MHz band-pass filter

IOTA BPMs for Protons

- Proton injections will come in bunched at 325 Mhz and diffuse
- Can turn on 30 MHz RF for ~50% modulation of proton beam
- Eventually there will be 2.19 MHz bunching in IOTA (not to start)
- New Pre-Amplifier design to see all 3 frequencies

Proton Signal Estimates (Very Preliminary!)

- Consider 8mA injected in 1.7 µs pulse
- Use narrowband Digital Downconverter
- Estimated TBT resolution for button BPMs with new pre-amps

 - Injection burnets
 Stored beam 50% @ 30 MHz 500 μm.
 Stored beam bunched @ 2.19 MHz 200 μm (§ gg 10' stored beam bunched % 2.19 MHz 200 μm (§ gg 10' sto
- - Stored beam 50% @ 30 MHz 20 μm

🚰 Fermilab

BPM Software Upgrades

- The front-end server is now a 10 core / 20 thread linux server
- IOTA was one of the first implementations of the server front-end
- Considerable work has been done for Muon Ring & Booster BPM upgrades
- These updates will be implemented into IOTA
 - Will facilitate other quality of life improvements
 - Will support ACNET or EPICs
- The DAQ network for digitizer readout will be upgraded with a 100Gb/s switch
- ACORN is purchasing the switch and we will use the IOTA BPM system as a high bandwidth source (raw data) for controls testing (Data Lake)

Current Monitoring in IOTA Injector Proton Line

🚰 Fermilab

Current Monitoring in IOTA Ring

Current Monitoring

Transverse Profile Monitors

- Two-wire scanner designed, built and tested at PIP2IT
- Wire scanner installed in PIP2IT MEBT scraper housing. Now on loan to FAST/IOTA
- Wire scanner has limited 1 ¼" beam aperture

Installed in PIP2IT MEBT

Wire Scanner Measurements from PIP2IT

- Unbiased 100 mm Tungsten wires
- Horz and Vert profiles of 2.1 MeV H-
 - Few percent loss of beam
 - Cross-talk between wires
- Background electrons in MEBT cause baseline shift
- Signal flips polarity losing electrons

Change quadrupole focusing

🛟 Fermilab

Transverse Emittance Monitors

- PIP-II WFE LEBT (30keV) and MEBT (2.1MeV) H-
 - Allison-style emittance scanners built in collaboration with SNS
 - PC-based stand-alone data acquisition and controls
 - Labview-based DAQ software
 - Both were operational at PIP2IT. Now on loan to IOTA proton line.
 - Phase-space measurements taken in a few minutes

Allison Scanner

PIP2IT LEBT Phase Space Evolution for H- Beam

Evolution of phase space along a 2 ms, 5 mA H- beam pulse for pulsed ion source beam.

Emittance evolution for ion source pulsed versus DC beam. Pulsed beam shows neutralization of H- beam.

Diamond Detectors

- Chemical Vapor Deposition (CVD) diamonds are readily available commercially and are radiation hard semi-conductor devices
- Available as Poly- crystalline (pCVD) and single crystalline structures (sCVD).
- Possible to design detectors with precise shapes and uniform properties suitable for loss monitor detection in accelerators.
- Advanced electronics allows for the pico-second structure of the diamond response to be fully exploited
- Wide range applications in accelerators
- Current interest
 - beam halo development
 - single particle proton detection (extinction measurements)
 - low energy proton loss monitoring (< 10 MeV).

Diamond Detectors – Low Energy Loss Monitor Test at PIP2IT

- 20-micron Single crystal diamond structure tested at 2.1 MeV
- Results:
 - A clear loss signal well correlated with beam intensity and position was detected
 - Charge pileup avoided in this setup (thin detector is below the Bragg Peak) Penetration depth for 2.1 Mev protons is ~ 27 µm
 - Charge deposition ~ 35.3 fC

~ 35.3 fC

Diamond designed to be 20 microns to avoid charge pile-up

Diamond Detectors – Low Energy Loss Monitor Test at PIP2IT

- Signal processing MPS application
 - A counting or integrator algorithm will be used
 - Fast digitization and FPGA monitoring of low energy H- losses (< 10 MeV)

17 3/17/2024 R. Thurman-Keup et al. | IOTA/FAST Collab Mtg | Proton Beam Diagnostics

Diamond Detectors – Potential applications

- SCVD loss/halo/current monitor with theses specifications
 - 20-micron thickness to avoid charge pile-up
 - Full RF shielding
 - Customizable so edge of crystal can be close to beam
 - Open design detector
 - Sensor sized to measure current
 - 2 GHz, 40 dB broadband Amplifier
 - 50 Ohm impedance can use any length of cable

Fully exposed edge mounted designs

Ionization Profile Monitors (IPM)

- Beam interacts with residual gas
 producing ion/electron pairs
- Ionization rate follows Bethe energy loss equation
 IOTA Protons

- lons collected by via electric field across beamline
- Amplified by microchannel plate (MCP)
- Signal extracted via conductive strips

IPM Planned(?) Location

IPM Design

- Design based on Booster design
 - Use same data acquisition electronics
 - Firmware modifications
- Gas injection to overcome ultra-high vacuum
- 30 mm vacuum apertures to reduce gas leakage to ring
 - Might be limiting aperture for beam
- Electric field of 16 kV for collecting ions
- Anode readout strips with 0.5 mm spacing (transverse profile resolution)
- Preamps have 1 MHz bandwidth (should handle turn by turn)

Digitizers

Preamps

Gas(or Metal) Sheet IPM

Higher molecular density without spoiling main vacuum

Questions?

23 3/17/2024 R. Thurman-Keup et al. | IOTA/FAST Collab Mtg | Proton Beam Diagnostics