Thoughts on Reconstruction with PDS

11/30/2023

Chao Zhang

Motivation

Study how much a better PDS can improve oscillation physics

- Understand the limiting factors that affect neutrino energy resolution
 - previous study by Shirley Li and Friedland
- Study if photon detection can help neutrino energy reconstruction and improve energy resolution
 - Calorimetry from light
 - Timing from PDS to improve particle ID
- Study the CP sensitivity gain if neutrino energy resolution can be improved
 - Two recent talks at the DUNE collaboration meeting (<u>Marta Torti</u>, <u>Luis Gustavo</u>), but more study is needed
- Study the requirement for an optimized APEX design

Phys. Rev. D 99, 036009 (2019)

Simulation Setup

- Use <u>Genie</u> and <u>edep-sim</u> to simulate mono-energetic neutrino CC events from 0.5 – 5 GeV.
 - 1000 events per 0.5 GeV
 - Record all truth-level information including dE/dx along the tracks
 - Geometry: LArBath (a huge LAr Volume so that all events are contained)
- Simulation setup instruction on FNAL clusters (from Wei Shi)
- Further analysis code: <u>https://github.com/czczc/PyEdep</u>
- Next slides will show a few event displays

Branch	unit	description
nu_pdg	int	neutrino pdg code
nu_xs	cm^2	interaction cross section
nu_proc	int	10+X: CC; 20+X: NC; (X: 1: QES; 2: RES; 3: DIS; 4: COH, 5: MEC)
nu_nucl	int	interact with proton or neutron
E_nu	MeV	true neutrino energy
E_avail	MeV	available energy from initial state particles, including mass if meson or lepton
E_availList	array, MeV	0: mu/e; 1: proton; 2: neutron; 3: pi+/-; 4: pi0; 5: others
E_depoTotal	MeV	total deposited energy
E_depoList	array, MeV	similar to E_availList but for deposited energy including all children

Possible contributors to v energy resolution

- Generator models
- Generation "Missing energy"
 - Nuclear scatter
 - □ Muon/pion decay
 - □ muon capture
 - Detection threshold
- \Box dE/dx -> dQ/dx
- Reconstruction and PID
- Others.

nu:14;tgt:1000180400;N:2112;proc:Weak[CC],RES;res:0;

Ę

nu:14;tgt:1000180400;N:2212;proc:Weak[CC],RES;res:0;

Observations

□ Time distribution has more features than charge distribution

- Tracks near vertex, EM showers (pi0): prompt (<few ns):</p>
- Fast track propagation: ~4 m per 10 ns
- Neutron slow down and propagation: tens of ns
- Particle decay: muon: 2 us; pion 26 ns
- <u>Muon capture</u>: could emits neutrons that result in delayed components
- Using time distribution can help neutrino energy reconstruction in the following ways:
 - Distinguish dots between EM and Neutron interactions, so that we can apply different calibration constants
 - Identify decay/capture products so that we can exclude them from calorimetry (adding back the parent mass)
 - Reconstruct the direction of particle tracks for background rejection

Nuclear smearing at Generator level

- Neutrino energy
 - 1000 events per 0.5 GeV
- □ Available energy:
 - KE for: p, n, nuclei
 - Total energy (KE + mass) for leptons and mesons: mu, e-, pi, pi0, etc
 - Smearing can be caused by
 - \circ binding energy
 - \circ intra-nuclear transport
 - Observation: smearing is less than tens of MeV, and is highest at 1.5 GeV where RES process is the highest

- Zoom in: available energy appears to have to 2 peaks, which come from the Quasi **Elastic Scattering process**
 - reasons unclear yet, may be related to the Genie generator

¹⁸⁰ 1.5 GeV

Smearing at energy deposition level

Deposited energy:

- All energy deposition including all daughter particles (scatter, decay, deexcitation, etc.)
- Observation: large smearing (~10%) with a long low-energy tail.

Cause of the low energy tail

- Energy lost to nucleus during nuclear scattering: neutrons, pions
- Ratio of E_depo / E_avail appears to be largely independent of initial energy: can be used as a calibration constant if there is PID

Cause of the low energy tail

- Energy lost to neutrinos during decay: muons, pions
- Energy lost from muon- capture

Fitted sigma = 120 MeV, ~7%

Next Steps

□ Correct decay products: improve resolution

- □ Apply thresholds: worsen resolution
- Apply dE/dx -> dQ/dx: worsen resolution

□ Apply dE/dx -> dL/dx: improve resolution

□ Finally

- Estimate "realistically achievable energy resolution" with photon information
- If significantly better than TDR (~13%), study the improvement on CP sensitivity.

Thoughts on PDS timing requirement and optical simulation

- LAr (doped with LXe) property
 - Scintillation time, fast and slow components
 - Rayleigh scattering
 - Absorption
 - Reflection from detector material
- PDS timing
 - Single photon time response -> t0 resolution
 - SiPM response, photon propagation inside the PDS module
 - Multiple photons: multiple-pulse separation
 - Sampling frequency
 - Module granularity

Parameter	Value
LAr Photon Yield (mip, 500 V/cm)	25,000 ph/MeV
Xe doping in Ar	10 ppm 53% of total light emitted @176nm 35% of light loss @128nm
Rayleigh Scattering Length	$\lambda_R(128 \text{ nm}) = 1 \text{ m}$
	$\lambda_R(176\mathrm{nm})=8.5\mathrm{m}$
Absorption Length	$\lambda_{Abs}(N_2@128\text{nm}) = 20\text{m}$
	$\lambda_{Abs}(N_2@176 \text{ nm}) = 80 \text{ m}$
X-Arapuca Tile det. Efficiency	$\epsilon_D = 2\%$
Field Cage Reflectivity	R = 70%
Cryostat Reflectivity	R=30% @128 nm, R=40% @176 nm
Anode	R=0% @128 nm, $R=20%$ @176 nm

