

APEX LY estimates from Standalone Simulation

F. Marinho, L. Paulucci & F. Cavanna

Geometry

Simulation setup

- Photons shot from the center of voxels.
- Isotropic direction and polarization
- Voxel size: 0.5 x 0.5 x 0.5 m³
- Same optical properties as for ProtoDUNE-VD simulations
 - $\circ~$ LAr refractive index, Rayleigh scattering, absorption
 - Reflectivity of membrane, anode, field cage, etc
 - $\circ~$ pTP emitted photons are also tracked
- All sensors detecting any level of light for evaluation
 - No cut on #pe applied
 - No sensors clustering required

Simulation setup

- Photons shot from the center of voxels.
- Isotropic directions and polarization
- Voxel size: 0.5 x 0.5 x 0.5 m³

Value Parameter LAr Photon Yield (mip, 500 V/cm) 25,000 ph/MeV Xe doping in Ar 10 ppmRayleigh Scattering Length $\lambda_R(128\,\mathrm{nm}) = 1\,\mathrm{m}$ $\lambda_R(176\,\mathrm{nm}) = 8.5\,\mathrm{m}$ $\lambda_{Abs}(N_2@128 \text{ nm}) = 20 \text{ m}$ Absorption Length $\lambda_{Abs}(N_2@176\,\mathrm{nm}) = 80\,\mathrm{m}$ X-Arapuca Tile det. Efficiency $\epsilon_D = 2\%$ Field Cage Reflectivity R=70% Cryostat Reflectivity R=30% @128 nm, R=40% @176 nm R=0% @128 nm, R=20% @176 nm Anode

Argon only LY map

Argon only LY map

Increase: (LY_{LAr}^{ptp} /LY_{LAr}^{no ptp}) -1

- Percentage ~50 %
 - uniform across volume

8

Argon-Xenon mixture LY map

Argon-Xenon mixture LY map

53% of total light emitted @176nm and 35% of light loss @128nm

- Percentage >60 %
- Higher impact noticed closer to the lower LY region

0.61

0.6

Conclusions

- Fairly complete standalone simulation implemented
- Estimates indicate high light yield:
 - Xenon scintillation emission characteristics
 - Combination of large PDS coverage and pTP emissions into cryostat
- Next studies:
 - Resolution on deposited energy, position, timing and so
 - Early background and physics based analysis