
Unit Tests for DUNE-HWDB
Alex Wagner

Hajime Muramatsu
Marvin Marshak

Urbas Ekka

1



Organization of tests
• The Unit tests are divided into 3 categories: get, post, patch.
• You can find the Unit tests in the following directory:

/test/RestApiV1

2



Running tests
• Calling an individual file runs the unit tests in that particular file.

• All unit tests can also be run in a batch by calling ./Test__all_tests.py

3



How do they work?

• Each unit test calls a dedicated wrapper function that exists in 
_RestApiV1.py (/lib/Sisyphus/RestApiV1/_RestApiV1.py)

• This wrapper function is called, with required input such as part_id 
(and data if running a post unit test), and assigned to a variable ‘resp’
• ‘resp’ has its status and different parts of its structure checked based 

on what it is testing.

Example of Wrapper 
Function

4



Example: test_get_users()

Calling wrapper function

Checking that the data file 
retrieved has the 
expected structure

5



Example: test_post_hwitem()
Uses wrapper 
function to post 
the part

Checks that the status of the 
post was ‘OK’

6



Example: test_patch_enable_item()

Wrapper function 
for posting item

Checking if the status of 
the response is ‘OK’

Collecting the 
associated part_id and 
component_id from 
the response

7



Example, continued:
Patching item based on component_id 
and part_id retrieved from the previous 
slide

Patching ‘enabled’ to be True (the 
purpose of the test)

Pushing the patched data 
using the wrapper function

Wrapper function to retrieve part 
information

Checking if the part has been enabled

8



Example, end:
Patching ‘enabled’ to be False

Pushing the patched data 
using the wrapper function

Checking if the part has 
been patched (if the part 
has been disabled)

9



Are the Unit tests ready?

• The Unit tests related to images are currently unfinished. In particular, 
the unit tests associated with posting images. 
• Otherwise, we hope for it to be ready in the coming week/ 2 weeks.

10


