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Simulation based inference leverages machine learning to carry out Bayesian inference in systems with in-
tractable likelihoods. However, transitioning a network trained on simulated data to real data runs the risk
of encountering domain shift, leading to performance losses. We attempt to implement domain adaptation
into the sbi neural posterior estimation framework using the Maximum Mean Discrepancy as an additional
network loss, using masked autoregressive flow (MAF) as our density estimator. We test the network on a
set of 400,000 simulated strong gravitational lensing images generated using deeplenstronomy. The source
domain is defined as low noise whereas the target domain has a noise profile sampled from experimentally
derived DES survey conditions. We find that SBI appears robust against small changes in the data with
similar performance on source and target. Moreover, while DA does lead to performance improvements, they
are marginal at 6% less inference error.

I. INTRODUCTION

Gravitational lensing is a phenomenon whereby the
trajectory of light is deflected as it passes through a grav-
itational potential. For systems with sufficiently high
surface mass densities, the effect is significant enough
such that it can be directly observed. In the strong lens-
ing regime, the image of the lensed object is split into
multiple images, magnified, and displaced relative to the
true on-sky position1. Lenses of this kind are powerful
tools for studying both the lens as well as the lensed ob-
ject. However, these studies are all contingent on being
able to obtain a reasonable model of the lens. Model-
ing gravitational lenses often follows a Bayesian inference
procedure using posterior density samplers and forward
modeling programs in order to iteratively approximate
the data using the model. Such methods traditionally
require closed-form likelihood functions.2 However, in re-
ality, the likelihood functions for these models are in-
tractable and often need to be approximated, leading to
reduced quality of inference.3

The problem of performing parameter inference us-
ing mechanistic models with intractable likelihoods has
been a longstanding challenge in many fields of re-
search. While methods do exist for performing infer-
ence in such scenarios, these often suffer from expensive
computational requirements and the curse of dimension-
ality, meaning that sampling efficiency goes down with
the dimensionality of the problem3. However, recent im-
provements in the performance and reliability of machine
learning models has allowed for a new class of methods for
tackling this problem. Simulation Based Inference (SBI)
leverages the capacity of neural networks for regression
tasks in order to learn the likelihood of an observation us-
ing simulated data generated from a mechanistic model3.
SBI offers several advantages over alternative methods.
First, SBI requires only one upfront computationally ex-
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pensive simulation step, such that inference is amortized.
Moreover, Machine Learning models are able to take ad-
vantage of the full data space, reducing the need for sum-
mary statistics. Finally, since the likelihood is not being
approximated, SBI offers improved quality of inference
over other methods3.

While a powerful technique, the practical implemen-
tation of SBI for inference on real data is hindered by
the problem of domain shift which arises when two data
sets have different properties or are drawn from differ-
ent distributions4. In such cases, networks trained on
some source domain will experience performance losses
when applied to a target domain composed of similar but
slightly different data5 (for example simulated and obser-
vational data). For the purpose of this study we consider
only the problem of covariate shift, where the conditional
probability relating labels θ to data x remains the same
ps(θ|x) = pt(θ|x), but the marginal probabilities of the
data differ5 ps(x) ̸= pt(x) . For instance, the presence
of noise in target data represents a covariate shift when
source data are noiseless. The class of techniques aimed
at learning models for use across domains is known as
domain adaptation.6

In this study, we attempt to introduce a feature-based
domain adaptation scheme into the existing simulation
based inference package sbi in order to parameterize
galaxy-galaxy strong gravitational lenses by directly in-
ferring the posterior. Given the low number of exist-
ing DES strong lensing exemplars with fully developed
models, we approximate the difference between real and
simulated data by producing a source domain with stable
noise conditions and a simulated target domain with vari-
able DES survey conditions. Ultimately, the goal of im-
plementing this algorithm is to develop a easily scalable
inference method which allows for the rapid parametriza-
tion of galaxy-galaxy strong lensing observations. This
would allow researchers to take greater advantage of the
rapidly increasing lensing datasets obtained from new as-
tronomical surveys. In §II we discuss density estimation
procedure which we attempt to apply domain adaptation
to. In §III we discuss the Maximum Mean Discrepancy,
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the feature-based distance measure we employ as the ad-
ditional loss function in network training. In §IV we go
over the simulated lensing sample and in §V we give an
overview of the network architecture we employ. Finally
in §VI and VII we go over the experiments carried out
on the network, their results and the implications of our
findings.

II. AUTOMATIC POSTERIOR TRANSFORMATION

We carry out posterior estimation using the publicly
available simulation-based inference package sbi7, uti-
lizing its implementation of Automatic Posterior Tran-
sofrmation (APT or SNPE-C) to perform posterior
inference8. APT is a Bayesian neural posterior estima-
tion method which leverages elements of synthetic like-
lihood methods and recasts inference as a density ra-
tio estimation task, allowing it to incorporate flow-based
density estimators with arbitrary proposal distributions8.
The inference procedure follows by maximizing the prob-
ability of the simulation parameters under a proposal
posterior which can be transformed into the true poste-
rior. We do so by minimizing the negative log probability

L = −
N∑
i=1

log Pr(θi) (1)

of the proposal posterior8.
As a density estimator we implement Masked Autore-

gressive Flow (MAF), which leverages the benefits of
both autoregressive models and normalizing flows9. Au-
toregressive models estimate a target density by decom-
posing it into a product of 1D conditionals10 p(x) =∏

i p(xi|x1:i−1). Normalizing flows estimate a target den-
sity as an invertible, differentiable transformation f with
a tractable jacobian of a simpler base density11 πu(u)
given by

p(x) = πu(f
−1(x))

∣∣∣∣det(∂f−1

∂x

)∣∣∣∣ . (2)

When used to generate data, autoregressive models cor-
respond to a differentiable transformation of an external
source of randomness12 and for specific parametrizations
these turn out to be equivalent to normalizing flows9.
MAF takes advantage of this property by stacking multi-
ple autoregressive models with different orderings of the
input variables and then modelling the density in a sin-
gle forward pass through the flow9. In this way, MAF is
made more flexible than a standard normalizing flow.

III. DIVERGENCE ALIGNMENT WITH MMD

To perform domain adaptation, we follow a statistic di-
vergence alignment procedure which relies on minimizing
the distance between the feature representations of the

source and target data13. In principle, this is achieved
by calculating a metric which measures the divergence
between the first or higher-order statistics of the source
and target domains, and introducing this metric as an
additional loss during training. We use the Maximum
Mean Discrepancy (MMD), a metric which measures the
nonparametric distance between the mean embeddings of
two distributions in a Reproducing Kernel Hilbert Space
(RKHS)14. This is achieved by defining a mapping of
the domains into the RKHS, H, and minimizing the dis-
tance between the mean embeddings µs, µt ∈ H of these
mappings

MMD2[F , s, t] = ∥µs − µt∥2H. (3)

Using the fact that µ := 1
n

∑n
i=1 φ(xi) where φ(x) is a

feature mapping in H, and that ⟨φ(x), φ(y)⟩H = k(x, y),
it is possible to obtain the distance in terms of a kernel
function15 k

MMD2[F , X, Y ] =
1

m2

M∑
i,j=1

k(xi, xj) +
1

n2

M∑
i,j=1

k(yi, yj)

− 2

mn

M∑
i,j=1

k(xi, yj),

(4)

where x, y ∈ X,Y are random variables drawn from dis-
tributions p, q respectively. In order to capture a range of
mean embeddings We choose k to be a linear combination
of Gaussian radial basis functions given by

k(x, x′) = e−
∥x−x′∥2

2σ2 , (5)

where x′ is an independent copy of x with the same
distribution.16

IV. STRONG LENSING SIMULATIONS

We simulate the strong lensing datasets us-
ing deeplenstronomy17, a wrapper package for
lenstronomy18 designed for generating large lens-
ing datasets for machine learning. We produce a total of
400,000 g−band images of galaxy-galaxy lensing systems
with 200,000 source and target samples each. For each
simulation, we define the image and survey conditions,
as well as the mass and light profiles.
Both source and target are produced with identical

image parameters but varying survey conditions. Source
survey conditions were fixed at a seeing of 0.9”, a magni-
tude zero-point of 30.0, and a sky-brightness of 23.5 mag
arcsec−2 at 10 exposures. Target survey parameters were
drawn from experimentally measured DES survey condi-
tions as specified in Abbot et. al (2018)19. In Figure 1
we display a sample of 10 randomly selected lenses from
each domain in order to illustrate the differences.
We parametrize the lens galaxy mass profile using a

singular isothermal ellipsoid (SIE) mass distribution20.
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FIG. 1. Random sample of 10 lenses from source and target
domains illustrating differences in samples

Parameter Train Set Priors Test Set Priors

θE U(0.3, 4.0) U(0.5, 3.0)
e1 U(−0.8, 0.8) U(−0.2, 0.2)

e2 U(−0.8, 0.8) U(−0.2, 0.2)

x U(−2, 2) U(−1, 1)

y U(−2, 2) U(−1, 1)

γ1 U(−0.05, 0.05) U(−0.05, 0.05)

γ2 U(−0.05, 0.05) U(−0.05, 0.05)

TABLE I. SIE Parameter priors used to generate training and
test sets where U(a, b) is a uniform distribution with upper
and lower limits a, b.

The SIE model is specified using the Einstein radius θE ,
the ellipticity (em1, em2), the position relative to the im-
age origin (x, y), and a shear profile defined by two shear
terms (γ1, γ2). We generate a test set with truncated pri-
ors in order to avoid edge effects caused by sample bias
at the upper and lower prior limits. We summarize the
parameter priors for both the training and test sets in
Table I.

We model the light distribution using a Sérsic lumi-
nosity profile parameterized by the Sérsic index n, the
half-light or effective radius Re, the ellipticity (el1, el2),
and position21 (x, y). These parameters are held fixed
for the lens galaxy at (x, y) = (0, 0), Re = 1′′, n = 1,
(el1, el2) = (0, 0.5) with only the magnitude allowed to
vary uniformly from 22.0-25.0. The parameters for the
lensed galaxy are specified in Table II. Since we are not
fitting for these parameters, both training and testingg

Parameters Priors

me U(19, 24)
Re(

′′) U(0.5, 1)
n U(2, 4)
x 0.0

y 0.0

el1 U(−0.2, 0.2)

el2 U(−0.2, 0.2)

TABLE II. Sérsic profile parameters for lensed galaxy where
U(a, b) is a uniform distribution with upper and lower limits
a, b.

sets are generated with identical light profile priors.

V. NETWORK ARCHITECTURE

Given the high dimensionality of the simulation out-
puts, we use a Convolutional Neural Network to extract
and summarize important features from the data. These
summaries are then used as the inputs for the density
estimator. Both the embedding network and density es-
timator are trained simultaneously during the inference
step. The embedding net consists of three convolutional
layers and a single fully connected layer with a maxpool-
ing and batch normalization operation between each con-
volutional layer. The network along with parameters is
summarized in Table III. The MAF density estimator
is constructed with 400 hidden units with 20 transfor-
mations each. The latent feature representation used for
the MMD calculation is obtained between the convolu-
tional and fully connected layers of the embedding net-
work. The MMD distance is then simply introduced as
an additional loss added to the standard negative log-
probability loss

Ltot = −
N∑
i=1

log Pr(θi) + λLMMD2 , (6)

where λ is a parameter weight which controls the influ-
ence of LMMD2 . The network is allowed to train until
convergence, defined as 20 epochs without improvement
in Ltot.

In order to determine the optimal value for λ we em-
ploy the hyperparameter tuning software optuna22. Dur-
ing the tuning process, network training occurs identi-
cally to normal operation with the exception of being
limited to a duration of 20 epochs. Through this pro-
cess, an optimal weight value of λ ≈ 9.95 was obtained.
In addition to the optimal value, we also test λ = 0.02
in order to determine the influence of MMD on the opti-
mization process. We train the network on an NVIDIA
Ampere A100 20GB GPU.



4

Layer Output Shape Parameters

Conv2d [-1,8,42,42] k=3, s=1, p=2

BatchNorm2d [-1,8,42,42] k=3, s=1

MaxPool2d [-1,8,21,21] k=2, s=2

Conv2d [-1,16,21,21] k=3, s=1, p=1

BatchNorm2d [-1,16,21,21] k=3, s=1

MaxPool2d [-1,16,10,10] k=2, s=2

Conv2d [-1,32,10,10] k=3, p=same

BatchNorm2d [-1,32,10,10] k=3, s=1

MaxPool2d [-1,32,5,5] k=2, s=2

Linear [-1,20] in ft=(32× 5× 5, 5)

TABLE III. Embedding Net summary where k is kernel size,
s is stride, and p is padding

VI. RESULTS

A. Posterior validation

To evaluate network performance, we generate 10,000
test samples half of which are source and half are target
domain. We check the performance of the network by
drawing posterior sample p(θ|xo) given an observation
xo and comparing the posterior mean with the ground
truth parameters θo. We first check that the ground truth
parameters fall within the support of the posteriors. In
Figures 8 and 9 we demonstrate this posterior check for a
randomly selected lens in the target domain with both no
DA implementation and MMD at λ = 0.02, respectively.
As can be seen, without DA the posterior was generally
not well recovered with the parameter distributions lack-
ing tight convergence and exhibiting correlations. This
was only marginally improved for some parameters af-
ter DA was implemented, nevertheless, network perfor-
mance appears comparable and for some parameters ap-
pears worse. Moreover, while DA is able to achieve better
fits on some dimensions, such as θE and em2, these are
not significant enough to constitute a definitive improve-
ment. As an additional qualitative check on performance,
we plot in Figures 2 and 4 the true vs predicted parameter
values for all five dimensions as a density map. We also
plot the true versus predicted parameter values with cor-
responding uncertainty in Figures 6 and 7. While slight
improvements can be observed in the parameter fitting,
especially in the case of θE , the performance is gener-
ally comparable between the no DA and MMD networks.
Moreover, if we compare Figure 2 to the source domain
in Figure 5, we see that performance differences between
the two domains are minimal.

As quantitative checks on model performance we cal-
culate the χ2 test statistic

χ2 =
1

N

N∑
i=1

(θ − θ̂)2

σ2
, (7)

metric No DA MMD; λ = 0.02 MMD; λ = 9.95

χ2 1.164 1.084 1.193

R2 -0.1106 0.04701 -0.2020

MSE 0.04504 0.04160 0.05088

TABLE IV. Performance scores for network trained both
without Domain Adaptation and MMD at λ = 0.02 and
λ = 9.95

the coefficient of determination

R2(θ, θ̂) = 1−
∑N

i=1(θi − θ̃i)
2∑N

i=1(θi − θ̄)2
, (8)

and the mean squared error

MSE(θ, θ̂) =
1

N

N−1∑
i=0

(θi − θ̂)2, (9)

where θ is the true parameter value, θ̂ is the posterior
mean, σ is the standard deviation of the posterior, θ̄ is
the mean over the ground truth values, and θ̃ is the mean
predicted values. The test statistics were calculated for
each dimension of the parameter space and the mean
across all five scores was taken to be the overall model
score. We summarize the network scores in Table IV.
From the metric values we can see that there was a slight
improvement in performance with MMD implemented at
λ = 0.02. The χ2 and MSE scores improved by 6.8%
and 7.6% respectively while the coefficient of determina-
tion saw an improvement of 142%. However, in the case
of the R2 score, while apparent improvements were large,
visual inspection of the predicted parameter plots does
not reveal the discrepancy suggested by the score. More-
over, the R2 for the MMD trial is nevertheless much less
than 1, and therefore does not indicate good model per-
formance overall. Comparing these results with a DA at
λ = 9.95, we see that an excessive weighting of LMMD2

leads to worse model performance, with an ∼ 82% lower
R2 value, and ∼ 13% higher MSE.
Of the three networks, the best performing was the

network trained with and MMD weight of λ = 0.02. For
all other values of λ, network performance was worse than
with no domain adaptation. That said, improvements
were marginal.

B. Uncertainty Calibration

In addition to evaluating the predictive power of the
network, we perform a simulation-based calibration pro-
cedure using the rank statistics of the ground truth pa-
rameters in order to constrain the validity of the network
uncertainty. For a well-calibrated inference algorithm,
the ranks of the ground truth parameters under the in-
ferred posterior must follow a uniform distribution23. We
therefore perform a series of qualitative and quantitative
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FIG. 2. True versus predicted parameter values for target
domain with no domain adaptation implemented. The points
are colored according to number density with yellower points
indicating higher density.

FIG. 3. Caption

FIG. 4. True versus predicted parameter values for target
domain with MMD at λ = 0.02 implemented. The points
are colored according to number density with yellower points
indicating higher density.

FIG. 5. True versus predicted parameter values for source do-
main with no DA. The points are colored according to number
density with yellower points indicating higher density

checks of uniformity. The simplest such check, shown in
Figure 10 is plotting the ranks in a histogram, allowing
for a diagnosis of auto-correlation effects in the posterior
inference. From Figure 10, we can see that the uncer-
tainties are slightly better calibrated following domain
adaptation, in particular looking at em1, em2 and y. Nev-
ertheless, most parameters exhibit some deviation from
uniformity. Histograms exhibiting a ∪-shaped distribu-
tion indicate an underestimation of posterior variance,
while a peaked distribution indicates an overestimation.
The variance in the ellipticity terms is therefore underes-
timated. Moreover, the right skewness of the θE posterior
ranks indicates an overestimation of the posterior mean.

Similarly, we can check the empirical cumulative dis-
tribution function of the ranks under uniformity. As can
be seen in Figure 11, the ranks distribution following do-
main adaptation can be said to be better described by a
uniform distribution as the CDF of all parameters, ex-
cept for θE , approach the line of uniformity.

As a quantitative check of uniformity, we perform a
Kolmogorov-Smirnov test against a uniform distribution
for each dimension of the parameter space. We also per-
form a classifier two-sample test (C2ST) comparing the
rank ensemble with a target distribution. The C2ST re-
lies on training a binary classifier to distinguish between
two samples and returning accuracy scores from cross-
validation24. Assuming both ensembles are drawn from
the same distribution, the scores should not be better
than chance, that is, 0.5. We perform the C2ST check-
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FIG. 6. True versus predicted parameter values for target
domain with no domain adaptation.

metric No DA MMD; λ = 0.02 MMD; λ = 9.95

KS p-val 1.099× 10−4 7.840× 10−3 2.568× 10−11

C2ST - Ranks 0.5779 0.5786 0.5811

C2ST - DAP 0.5668 0.5621 0.5731

TABLE V. Caption

ing uniformity of the ranks as well as the similarity of
the data-averaged posterior (DAP) to the prior. For a
well-calibrated Bayesian analysis, we expect the DAP, or
the average of the posterior expectation with respect to
our generated data, to be distributed according to the
prior.23 . The results of these tests are summarized in
Table V. Mirroring the qualitative checks, from the KS
p-values, we can see that the ranks distributions are not
uniform for any of the network runs. Moreover, the C2ST
ranks test shows that the ranks are, on average, dis-
tributed less uniformly when domain adaptation is ap-
plied. That said, the DAP seems to better resemble the
prior post-DA at λ = 0.02.

VII. DISCUSSION

In this paper, we attempt to implement domain adap-
tation into the sbi package using the Maximum Mean
Discrepancy between the source and target domain dis-
tributions as an additional loss in the training procedure.
We introduce this DA scheme into an automatic poste-
rior transformation NPE procedure within the package.
The MMD is introduced with a weighting parameter λ,

FIG. 7. True versus predicted parameter values for target
domain with MMD at λ = 0.02 implemented.

FIG. 8. Parameter posteriors for a randomly selected simu-
lated galaxy-galaxy lens in the target domain with no domain
adaptation. The red line and dot represent the true parame-
ter value. In blue is the mean posterior value inferred by the
network.
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FIG. 9. Parameter posteriors for randomly selected simulated
galaxy=galaxy lens in the target domain with MMD at λ =
0.02. The red line and dot represent the true parameter value.
In blue is the mean posterior value inferred by the network.

optimized using optuna, which found an optimal weight
of 9.95. In addition, we test DA with λ = 0.02. We test
the network on a sample of 400,000 simulated galaxy-
galaxy lenses generated using the deeplenstronmy pack-
age. The lenses were divided into 200,000 source and
200,000 target domain lenses with target domain lenses
generated with noise profiles derived from DES survey
conditions. For each lens we attempt to fit 5 SIE param-
eters θE , em1, em2, x, y.

Network performance exhibited marginal improvement
following an MMD implementation with weighting of
λ = 0.02. Given the small nature of the improvement, it
is not possible to completely rule out random variation
in network parameter weighting as the cause. That said,
increasing the MMD weight to 9.95 caused a decrease in
performance such that some variation can be attributed
to the implementation of DA. Similarly, the network un-
certainty was better calibrated post-DA, at least based on
the KS test and the C2ST-DAP. The ranks distribution,
however, deviated more from uniformity post-DA accord-
ing to the C2ST-Ranks test. This is in tension with the
qualitative checks on uniformity, which appear to show
the ranks distribution across most parameters converging
to a uniform distribution. Moreover, there were still sig-
nificant deviations from uniformity in the ranks statistics,
therefore limiting network viability. Nevertheless, base-
line performance was adequate in recovering parameter
values and from the χ2 we can see that the true value
often fell within the network variance. In particular, θE

FIG. 10. Histograms of rank distributions of inferred parame-
ters under true parameters for target domain with no domain
adaptation (top) and MMD at λ = 0.02 (bottom). Gray bar
represents the 99% confidence interval for a uniform distribu-
tion.

was consistently well inferred by the network with a tar-
get MSE of 1.108× 10−2 without DA and 8.762× 10−3

post-DA which was the lowest of all the parameters.

While present results show limited improvement post-
DA, these do not necessarily indicate that this is a non-
viable research avenue. It is important to note that per-
formance on source and target domains is similar indi-
cating that SBI is more robust against changes in the
data. Despite this, applying domain adaptation still led
to marginal network improvement. It therefore might
prove fruitful to test the method on source and target
domains which exhibit a greater degree of divergence.
Moreover, there were several limitations which prevent
the study from conclusively ruling out the viability of DA
as applied to SBI. First, a limited number of network ar-
chitectures were tested with little variation, mainly con-
sisting of the number of convolutional layers introduced.
Second, only the MMD weight underwent a hyperparam-
eter tuning procedure, with other network parameters
optimized only through trial and error. The hyperpa-
rameter tuning was moreover apparently unsuccessful,
as the stated optimal weight did not yield the best net-
work performance. Improvements in the hyperparame-
ter tuning procedure could therefore yield better results.
Beyond errors arising from procedure, the MMD is not
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FIG. 11. Empirical cumulative density functions of rank dis-
tributions of inferred parameters under true parameters for
target domain with no domain adaptation (top) and MMD
at λ = 0.02 (bottom). Gray region represents the 99% confi-
dence interval for a uniform distribution.

the only such divergence measure that can be used for
this application, with other options available such as the
correlation-alignment loss25 and the KL-divergence26.
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