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• Bending of light by 
gravity

• Cosmological probes

• Powerful telescopes

• Constrain mass 
distributions

• We keep discovering 
more and more – How 
do we keep up?
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Gravitational Lensing 
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• Simulations are powerful 
research tools 

– Predictive power

– Inform Observation

– Test theory 

• Poorly suited for parameter 
inference

– Intractable likelihoods

– Most methods 
computationally expensive

Parameter Inference with Intractable Likelihoods
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(Phillepich+, 2019)



Learn the posterior from sims 
 infer from real data

• Leverage ML
• Prior  simulate data 

train network perform 
inference on real data

• Directly target posterior

• Problem!  how do you 
go from simulated data 
to real data?
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Simulation Based Inference

(Cranmer+, 2020)
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Domain Adaptation
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• Family of techniques to deal with domain shift

• Source vs Target Domains

• Feature based domain adaptation

• Align feature representations of the data 

(de Mathelin, 2023)
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Maximum Mean Discrepancy

(Gretton, 2018) (Jun Shi+, 2011)

• Describe data using smooth 
function

• Find distance between 
distribution embeddings in 
RKHS
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400k SIE lenses using 
Deeplenstronomy

• 200k source: low 
noise survey 
conditions

• 200k target: DES 
survey conditions

• 5 parameter fitting

•

•

•
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Strong Lensing Simulations
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• Two types of performance checks

– Predictive performance

• How well does the model recover the true parameter values

• Metrics

– ଶ ଶ

– Uncertainty calibration

• How well does the model estimate prediction uncertainties

• Metrics – Rank statistics

– KS-test p-values, C2ST – DAP, C2ST – Ranks

Results
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Performance Metrics: No DA vs MMD

9

• Marginal 
improvement 

• From true values 
fall within uncertainty

• Ranks, on average not 
uniformly distributed

• From C2ST –
deviations not large 
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Parameter Inference- No DA
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                  Source                                                 Target 

• Similar performance on source and target
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Parameter Inference- MMD, = 0.02
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                  Source                                                 Target 

• Slight improvement but not equally across all 
parameters
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Ranks CDF - No DA
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Source                                                 Target 

• Deviations from uniformity across all parameters
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Ranks CDF - MMD, = 0.02
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Source                                                 Target 

• Improvement on both source and target
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Ranks Histogram - No DA
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                  Source                                                 Target 

• Histograms help understand errors in uncertainty.
• underdispersed
• Skewed 
• Large deviations in source domain 
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Ranks Histogram - MMD, = 0.02
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Source                                                 Target 

• Marginal improvements in uncertainty calibration
• Variance still underestimated for ଵ ଶ but discrepancy is 

mitigated 
• Skew in ா ranks still present but gone for 
• Source domain still largely deviates from uniform
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• SBI robust against changes in data – test on source and 
target with larger discrepancy 

• Different distance measures

– CORAL

– KL-Divergence

• Use real lensing data 

• Test different networks

– Larger CNN

– Different network architectures

Future Work
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Maximum Mean Discrepancy 
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• Represent the target density 
as an invertible 
transformation of a simpler 
density

• Decompose density into 
product of 1D conditionals 

Normalizing Flows Autoregressive Models
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Density Estimation With Masked Autoregressive Flow

(Weng, 2018) (Ermon, 2018)
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SBC
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(Talts+, 2018)
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SBC cont. 
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(Talts+, 2018)
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Covariate Shift: 

• Change in data space but 
not in label space

• Change in conditional 
probability but not marginal 
probabilities 
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Domain Shift 
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3 convolutional layers

1 fully connected layer

20 summary outputs
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Embedding Network
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Density Estimator 
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Density Estimator 
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Density Estimator 
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Density Estimator 
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Density Estimator 
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