
HEP-CCE & Future of HEP Computing

YSSS Symposium

Amit Bashyal
Argonne National Laboratory

December 5, 2023

1

https://sites.google.com/view/amitbashyal/home


HEP-CCE : A Brief Introduction

2

 HEP-CCE (Center for Computational 
Excellence)

 2020-2023 Pilot Project
 6 Experiments (Energy, Intensity and Cosmic 

Frontiers) and HPC Experts*
 4 US National Labs

 Efforts:
 IOS: Input/Output and Storage Studies on the 

HPC*
 PPS: Portable Parallel Strategy
 EG: Event Generators
 CW: Complex Workflows



ATLAS: Computational Needs in the Future

3

We are here.

Conservative:  Existing person power level 
maintained at current level with current level of 
expertise.

Aggressive: Increase in expertise
•  Increase the person power 
•  Increase the expertise of existing person power

Improvement in computing capacity with 
10% increase in R&D budget annually

Improvement in computing capacity with 
20% increase in R&D budget annually



DUNE: Challenges and Opportunities

4

 

 



Computing Resources for Future HEP Experiments

5

SOLUTION:
HPCs can fulfill the computing 
needs through the era of HL-LHC 
(Run 4) and DUNE.

5

BUT

HEP software must be refactored 
appropriately to utilize HPC 
resources.



HEP Data and ROOT Data Model

● ROOT has been workhorse of HEP experiments
○ Data processing, storage and analysis

● HEP data models are complex
○ Using C++ language features: pointers, 

inheritance, polymorphism
● Use ROOT to read and write data into ROOT::TTree

○ TTrees store data of any types (TBranch)
○ Use of internal libraries, metadata handlings 

and functionalities for efficient and scalable 
I/O 

Tree

Branch-1
(int)

Branch-2
(float)

Branch-N
(foo)

HEP Data ROOT HTCsWorks best inOptimized for

6

https://root.cern.ch/


7

HPC Storage Systems

7

HPCs have an established I/O software stack used 
to support parallel file system

● High Level libraries (like HDF5) can hook into the HPC 
I/O stack. 

● Allows us to take advantages of optimizations such as 
collective I/O (collective I/O example in back up slides*)

HPCs use customized hardwares like GPUs or TPUs designed 
for specific tasks like scientific simulations, AI/ML etc. 
● Don't support complex data models that are usually supported 

by ROOT
Compute rack of Aurora



HEP-CCE (IOS) Phase I : HPC Friendly Storage for HEP 
● Develop an experiment agnostic framework to store HEP data in HPC friendly 

storage format (like HDF5) and perform I/O.
○ Snowmass White paper on the need of HPC friendly storage format (Link) and presented 

in snowmass CompF4 Topical Group meeting (Link)
○ Toy Framework to study and develop I/O routines to write HEP data into HDF5 and other 

formats (Link)
■ Developed algorithm to utilize HDF5 collective I/O (an optimized parallel I/O routine) to write 

HEP data in HDF5 format (Link)
■ I/O scaling tests done in the CORI @ NERSC
■ Results presented in CHEP 2023 (Proceeding submitted)

8

https://arxiv.org/abs/2203.07885
https://indico.fnal.gov/event/53251/
https://github.com/hep-cce2/root_serialization.git
https://github.com/physnerds/h5demos/tree/mpi_final/h5demos
https://indico.jlab.org/event/459/contributions/11807/


Parallel I/O with HDF5

9

Test done in a  single node
Batch size of 100 events

Throughput = (Number of Events processed)/
(Application Run time)

For Parallel I/O: 
4 parallel processes
Threads per Rank: #Threads/4

● Total Throughput:
 (Throughput  per rank)  
X(MPI Ranks)

● Test with 64 threads per 
node.

I/O Calls Fraction of Total I/O 
Time

MPI calls (external to HDF5) 14%

Write data into HDF5 file 32%

Other (including serialization) 54%



HPC Friendly Storage System

10

Data Products as 
Complex C++ Objects

(In Memory)

HPC Friendly Data 
Products

HDF5 Format

Translation 
(Using ROOT)

Write 

● Use ROOT to serialize HEP data products 
to make it HPC friendly. 

● Collective writing of data into HDF5 file
● HPC friendly storage but not data

○ Data needs to be GPU friendly 

HEP data needs to 
serialize/deserialize using 
ROOT.

Complex objects cannot 
be offloaded directly into 
the GPUs. 



Extension to Direct GPU OffloadingData Products as 
Complex C++ Objects

(In Memory)

HPC Friendly Data 
Products

HDF5 Format

Translation 
(Using ROOT)

Write Offload into GPUs 
Directly

HPC Friendly Data 
Products

HPC Friendly 
Data Products

(In Memory)

HDF5 
Format

Write 

Design Data Model that is 
HPC (GPU) friendly

HEP data needs to 
serialize/deserialize using 
ROOT.

Complex objects cannot 
be offloaded directly into 
the GPUs. 

GPU

11

Ongoing workOfflo
ad



GPU Friendly HEP Data
● Conducted survey among HEP experiments (ATLAS, DUNE, CMS etc) 

○ Understand the efforts made by experiments to make their data HPC friendly
○ Common Challenges

■ HEP data models are object oriented with complex data models optimized for traditional 
computing workflow

■ Design based on experimental needs and computational technology at that time
○ Common Solutions

■ Utilization of Arrays, nested arrays, (Ao)SoA
■ Experiments apply these common solutions according to their use case and experimental 

needs
○ Survey results as one of the deliverables of first iteration of HEP-CCE and basis for 

second iteration of HEP-CCE effort

12

Black boxes represent 
contiguous memory layout

https://github.com/hep-cce2/GPU-DM.git


Outlook in Second Iteration of HEP-CCE (Ongoing and Planned Works) 
● Development of GPU Friendly data model (experiment agnostic) with the 

framework that mimics I/O in both host and device (Link)
○ Structure of Arrays data model based
○ Initial tests with ProtoDUNE Trigger Data model and CAF Data

● RNTuple will replace TTree as the primary I/O and storage system in ROOT
○ Limited support for data models
○ Ideal to synchronize the GPU Friendly data model effort with RNTuple
○ Development of data models that can be offloaded in GPUs and persisted in both 

RNTuple and HDF5 (or other HPC Friendly storage system) (Link)
○ Optimize Data storage with tuned I/O patterns better suited for HPC platforms

13

*There are many things happening in many fronts in HEP-CCE. This talk highlights the works that I led 
or where I played significant role.

https://github.com/physnerds/gpu-data-models.git
https://github.com/physnerds/SoADesign/tree/feature/dev


14

THANK YOU! 



BACK UP

15



HDF5 Data Model

H5::File

H5::Group A

H5::Group B

H5::Dataset B(1)
H5::Dataset B(2)
…
…
H5::Dataset B(x)

H5::Dataset A(1)
H5::Dataset A(2)
…
..
H5::Dataset A(x)

H5::Dataset AB(1)
H5::Dataset AB(2)

File stores the data.
Groups are used to organize 
data objects.

● Data written in Datasets.
● Datasets can be:

○  Grouped together to 
organize data objects

○ Shared among groups
● Store H5::Attributes for metadata

● MPI libraries implemented to 
perform  parallel I/O on the 
HDF5::Datasets

HDF5 File needs to be opened with 
the MPI Flag to enable the parallel 
I/O.

16



Data Products are 
experiment specific C++ 
objects usually written in 
ROOT format.

Use ROOT as common 
tool to serialize C++ 
objects into byte stream 
array buffers

HDF5 Datasets store serialized 
data products with mapping 
optimized for parallel I/O. Mapping 
is independent of experiments. 

Data Product (X)
Event 1
Event 2

..

Data Product (Y)
Event 1
Event 2

..

ROOT to Serialize

ROOT to Serialize

H5::Dataset

HDF5 as Data Storage Format

Additional H5::Dataset to store 
navigational information like buffer 
sizes of  events in X and Y.

17



MPI rank 0 MPI rank 1 MPI rank 2 MPI rank 3

Events

Read/Input

3 4 7 8 11 12 15 16

Write happens in batches of 
2 events per process

First parallel 
write

Second 
parallel 
write

1 3 4 5 6 7 82 9 10 11 12 13 14 15 16

1 2 5 6 10 13 149

Parallel (Collective) I/O using HDF5 

All processes participate in 
I/O on a single file.

18

0 2 4 6External MPI implementation to 
calculate buffer-size in each 

parallel process



POSIX (TOP) and STDIO OVER-VIEW (BOTTOM)

19

RNTuple TTree



I/O Performance Comparison

20

I/O performance of the toy framework is 
shown in various output modes including 
ROOT. 

Study was done in CORI Machine.


