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the big picture:

problem of determining the IR
phases of gauge theories is complex

matching of anomalies ('t Hooft) constrains
any IR fantasy one might have

old story, eg massless QCD: pions!; preons; Seiberg dualities...



the big picture:

problem of determining the IR
phases of gauge theories is complex

matching of anomalies ('t Hooft) constrains
any IR fantasy one might have

old story, eg massless QCD: pions!; preons; Seiberg dualities...

the new stuff:

there are new 't Hooft anomalies,
thus new constraints on IR behavior,
that were missed In the 1980s,
Involving higher form symmetries

Gaiotto, Kapustin, Komargodski,Seiberg: 2014-... [GKKS+]



the hype . A New Kind of Symmetry Shakes Up
' Physics

g So-called “higher symmetries” are illuminating everything from

particle decays to the behavior of complex quantum systemes.

“Quanta”

April 18, 2023

The symmetries of 20th-century physics were built on points. Higher symmetries are samuel Velasco/Quanta
based on one-dimensional lines. Magazine



any hype aside, this is exciting from a general QFT point of view
as it gives a new nonperturbative tool to study gauge theories

this talk:
1. HOW MIXED ANOMALIES BETWEEN CHIRAL

(invertible or not) AND CENTER SYMMETRY (“1-form”)
ARISE IN HILBERT SPACE OF GAUGE THEORY ON
TORUS

2. WHAT THEY IMPLY



the main points to make

1. generalized anomalies between discrete symmetries (parity or
chiral symmetry) and center symmetry (“1-form”) can be
understood using canonical quantization on T° with appropriate
background fields (= twisted b.c. or “t Hooft fluxes”)

2. quite unusually, they imply exact degeneracies in the Hilbert
space at any finite size T°, thus also in the infinite volume limit!

3. such degeneracies occur for anomalies involving both
invertible and “noninvertible” symmetries



comments/disclaimers/excuses:

will use “old-fashioned” language, one that was around by 1980
not focused on applications, but on gaining simple understanding

study examples; no pretense of generality, no theorems

there are many details that | cant explain in an hour



plan

1. reminder of old-fashioned “poor man’s” language (~1980)
1.1 center symmetry in gauge theories on T° (“1-form symmetry”)
1.2 electric flux sectors in Hilbert space on T°

1.3 “magnetic” fluxes on T°

(“t Hooft fluxes” or “t Hooft twisted b.c.”
“2-form background field for 1-form symmetry”)

2. the basic anomaly: 8—periodicity anomaly (a ia t Hooftvan Baal > GKKS+]

3. examples of mixed anomalies & implications

3.1 invertible symmetry in SU(N) with adjoint quarks (like super-YM)
3.2 noninvertible symmetry in SU(N) X U(1) with two-index S/AS Dirac quarks



1. reminder of old-fashioned language (~1980)

use Hamiltonian quantization on T°:

Ay = 0 gauge, states Y[A] invariant under time-independent gauge transforms (Gauss’ law)




1. reminder of old-fashioned language (~1980)

1.1 center symmetry: T, i = 1,2,3: “gauge” transforms periodic in

x; up to a center element —
A A AT |
— — _ - l_él“ /’
TZ(X + e]L]) — Tl(’x) e Ny /]\;(; / "7
7
only acts on winding Wilson loops in fundamental =
I, I &t Ly
A l fAidxi AA A_l lﬁé A
Wi — ’[I‘ng e O . TZW]TI — e N7y W]

- time-direction version familiar from deconfinement transition in pure YM

- modern language: Z{’ 1-form symmetry, only acts on line operators,
not on local gauge mvarlants ike tr £ F,, ..



1. reminder of old-fashioned language (~1980)

1.1 center symmetry: T, i = 1,2,3: “gauge” transforms periodic in
x; up to a center element =

T(X+2eL) =T e~ T 3
(X +e,L;) = T(x) e~ 2l

only acts on winding Wilson loops in fundamental —

Ly .
A 1 | Adx' AT 27 o
W.=trpP e o TWT ' =V W,

——————————————————————————————————————————————————————

on lattice, 7, multiplies by z = e shown U S N U O O S

link fields in direction 1 (for all x;, x,) l][]][l][llll

- all nonwinding closed loops invariant 1 R R e e S SEEEEE

- winding loops transform by z (R T i s it A S R



1. reminder of old-fashioned language (~1980)

1.1 center symmetry: T, i = 1,2,3: “gauge” transforms periodic in
x; Up to a center element

> = — N = 27
I'(x + eij) = T(x) eV %

if the SU(N) theory has adjoint fields only, Z{’ remains a symmetry, since

A\

lP i > T‘Pad] z_ so transformed field has same b.c. (7 and 7-! phases cancel)

If matter representation has nontrivial N-ality (transforms under center),
the story changes; need to mention two cases for my examples:



1. reminder of old-fashioned language (~1980)

1.1 center symmetry: T, i = 1,2,3: “gauge” transforms periodic in
x; Up to a center element

if the SU(N) theory has adjoint fields only, Z](V” remains a symmetry, since

Va\

\P i > T‘Pad] z_ so transformed field has same b.c. (7 and 7-! phases cancel)

in SU(N=2k) with two index (S/AS) quarks only 7V c 7| is a symmetry
lI’S,AS - T W, T, SO transformed field obeys dlfferent b C., only when

/\NA

Vs — T2 Wy (T7 7Y transformed under Z:" is consistent



1. reminder of old-fashioned language (~1980)

1.1 center symmetry: T, i = 1,2,3: “gauge” transforms periodic in
x; Up to a center element

if the SU(N) theory has adjoint fields only, Z](V” remains a symmetry, since

Va\

\P i > TlPad] z_ so transformed field has same b.c. (7 and 7-! phases cancel)

in SU(N=2k) with two index (S/AS) quarks only 7V c 7| is a symmetry
lI’S,AS - T W, T, SO transformed field obeys dlfferent b C., only when

/\NA

Vs — T2 Wy (T7 7Y transformed under Z:" is consistent

IN SU(N) X U(1) with quarks in (N,1) [or (S/AS,1)...] Z(l) remains a symmetry,
with 7(x) 7 phase compensated by opposite Z phase In U(1)




1. reminder of old-fashioned language (~1980)

1.1 center symmetry: T, i = 1,2,3: “gauge” transforms periodic in
x; Up to a center element

physically, In each case: center symmetry =>

stability of some flux tubes




1. reminder of old-fashioned language (~1980)

1.1 center symmetry: T, i = 1,2,3: “gauge” transforms periodic in
x; Up to a center element

> = — > = 27
I'(x + eij) = T(x) eV %
in each of these cases, the appropriate 7; obey
[Ti, H | = 0 so we can label states in T° Hilbert space

by “electric flux” quantum numbers | E. e, e,,¢;) = | E, ¢)

|E e) = |E,e) e’ T | three (mod N) integers



1. reminder of old-fashioned language (~1980)

1.1 center symmetry: T, i = 1,2,3: “gauge” transforms periodic in
x; Up to a center element

[Tp ﬁ] — O |E9 619 629 €3> — |E, g>

1.2 electric flux sectors in Hilbert space on T°
value of ¢; is changed by one unit by acting with W, on state:

T; (W;|8)) = (W;|2)) e vt

| | in pure YM, at 0 # =, as L — oo, only one electric flux
{ 1. s sector (é=0) has finite energy, while all others have
2 L T energy ~ L with coefficient given by the k-string

- L) tension; studied much on and off the lattice:

't Hooft ‘80, Luscher ‘82, van Baal, Witten,...




1. reminder of old-fashioned language (~1980)

+—Heentersvmmetrvinaauaetheornes or ]_3(“-

12 ic-fiux—sectors-ir Hbe ‘i;‘=i‘

1.3 “magnetic” fluxes on T°

(“t Hooft fluxes” or “’t Hooft twisted b.c.”
“2-form background field for 1-form symmetry”)

“‘whenever you have global symmetry, it pays to introduce a background gauge field for it”
(Seiberg)



1. reminder of old-fashioned language (~1980)

11 ~antersvmmetrvir Jaguc ‘=i=- ‘]‘3(u_ '
1+-2-electricflux-sectors-inHilbert spaceon—+

1.3 “magnetic” fluxes on T°

(“t Hooft fluxes” or “’t Hooft twisted b.c.”
“2-form background field for 1-form symmetry”)

O-form symmetry (usual one, acting on local operators) has 1-form gauge field (link-based)
1-form symmetry has 2-form gauge field (plaquette based)

1B, (X
, U — =z U, now, make z /6 'm/( )
vV i /" a s v A L
— L i B X-dependent: | plaquette based
2o ) T (2-form) Z,~valued




1. reminder of old-fashioned language (~1980)

+—+-center symmetry-in-gauge theories-on-1+-

12 ic-fiux—sectors-ir Hbe ‘i;‘=i‘

1.3 “magnetic” fluxes on T°

(“t Hooft fluxes” or “’t Hooft twisted b.c.”
“2-form background field for 1-form symmetry”)

1-form symmetry has 2-form gauge field (plaquette based)

for 1-form gauge field, #Aﬂdx” IS gauge Iinvariant - ng/w(x)
v T —
| plaquette based
R (2-form) Z,~valued




1. reminder of old-fashioned language (~1980)

11 ~antersvmmetrvir Jaguc ‘=i=- ‘]‘3(u_ '
1+-2-electricflux-sectors-inHilbert spaceon—+

1.3 “magnetic” fluxes on T°

(“t Hooft fluxes” or “’t Hooft twisted b.c.”
“2-form background field for 1-form symmetry”)

1-form symmetry has 2-form gauge field (plaquette based)

for 2-form abelian/Z,, gauge field, {)Bﬂydzaﬂ” - e LD ﬂu(x)
is gauge invariant; on T° we can introduce i | - plaguette based
curvature-free background for Z,, 2-form field | (2-form) Z,~valued



1. reminder of old-fashioned language (~1980)

11 ~antersvmmetrvir Jaguc ‘=i=- ‘]‘3(u_ '
- - electric flux sectors in Hilbert space on T-

1.3 “magnetic” fluxes on T°

(“t Hooft fluxes” or “’t Hooft twisted b.c.”
“2-form background field for 1-form symmetry”)

Xy, X,-plane

dx'dx’B,, = (modZﬂ)

is gauge invariant; on T° we can introduce
curvature-free background for Z, 2-form field

for 2-form abelian/Z,, gauge field, {)Bﬂydzaﬂ” <JE X°dx’By; = (mod27z)

dx dx'B;, = (mod27z)




i ecenter symmetrv-in-gauae theories on > 1- ”
+2-electric ors-inHitbert-space-onF

1.3 “magﬂetl%ﬂblxe%‘réﬂ T

summary:

In a gauge theory with 1-form symmetry

on T°, introduce a background field, »z, labeling

the baCkg round (= 't Hooft twist of b.c.; no details...analogy w/ background Wilson loop)

Hilbert space basis is: |E, )., with* T|E,&).. = |E, ). '~¢

in thermodynamic limit, usually only ¢ = 0 have finite energy while dependence
on b.c., m, is expected to be irrelevant, at least for gapped theories (* at 9 = 0)

[check e.g. Teper, Stephenson 1989...]



11 ~antersvmmetrvir Jaguc ‘=i=- ‘]‘3(u_ '
1+-2-electricflux-sectors-inHilbert spaceon—+

1 2 “magnetic” fluxes-onT
2. the basic anomaly: 6—periodicity anomaly (z ia t Hooftvan Baal—> GKKS+]

3. examples of mixed anomalies & implications

3.1 invertible symmetry in SU(N) with adjoint quarks (like super-YM)
3.2 noninvertible symmetry in SU(N) X U(1) with two-index S/AS Dirac quarks



- reminder of old-fashioned languac
¢ S otry | T :
12-€ 16

2. the basic anomaly: 6—periodicity anomaly (z ia t Hooftvan Baal—> GKKS+]

consider a unit “magnetic flux” (twist) in one plane (12, say) only:

Ib
-

|

( (
t t . o
\ \ 7}A m = (09091)
S At
= (0,0.]) 7 =/0,0]1
€y = O e,= /(/»m//y)

torus Hilbert space, with or without twists,
splits into N> electric flux sectors



T C€ symmetry-in-gauge-theories-on—F - .
ert-space-on1-

45 L f o o L
2. the basic anomaly: 6—periodicity anomaly (z ia t Hooftvan Baal—> GKKS+]

consider a unit “magnetic flux” (twist) in one plane (12, say) only:

|
} ?
\ ! . m = (0,0,1)
X /\ )\ N\ /%’}5 5 . . ,
A | - el Crucial observation ('t Hooft ~ 1980)
i = (0,0,]) 7t /0,041 R 1
) ) T, the Z'1 generator in the direction
65 = (7 = /(/?400/ /V) N .
orthogonal to the (12) plane of the twist
m
has fractional winding number Q = ﬁ(mod Z)

torus Hilbert space, with or without twists,
splits into N> electric flux sectors



Crucial observation (’t Hooft) - have to accept (ask later...backup slide)

A\

15, the Zzi,l) generator in the direction orthogonal to the (12) plane of the twist
m
has winding number Q = WB(mod Z)

[15 is a gauge transform, a map from torus to gauge group, so winding makes sense]

3d CS action, ¢ = [tr(AdA + ...), normalized to shift

eiZﬂSCS by unity under a unit-winding gauge transformation,
so e'*™cs invariant

\4

A\

T, e 3 tr(AdA+...) fgl _ oiFmy Hi27 [ tr(AdA+-..)

A

m
however, CS action shifts by — under fractional winding

N



Crucial observation (’t HOOft) - have 1o accept (ask later...backup slide)

T3, the ZZS) generator in the direction orthogonal to the (12) plane of the twist

m
has winding number Q = ﬁ(mod Z)

0 T, o273 tr(AdA+...) j‘wg—l _ eiz—]g% 01273 tr(AdA+...)

- fractional winding explained by 't Hooft ~ 1980
- as an equation in Hilbert space (*) appears first in unpublished Ch. 3 of van Baal’s PhD thesis, 1984

at the time, () significance as an anomaly and implications for spectrum, incl. in TD limit, missed!

- Eq. (): Hilbert space expression of what GKKS ~2014 call @ -periodicity anomaly (GKKS study Euclidean path integral)
UI\I;[A] — ei@ “P[A] , Ul(ei2ﬂSCS[A]\P[A]) — ei(27r+8) (eiZﬂSCS[A]\P[A])

- hence e'?™cs is “operator shifting @ by 27" (U, is operator of unit-winding gauge transform)

- Eq. (*) says that when m; # 0 (mod N), shifting 6 by 2z and center symmetry do not commute

we care because 2x shifts of 0 can be part of physical symmetry (simplest: parity in pure-YM,,_ )




11 ~antersvmmetrvir Jaguc ‘=i=- ‘]‘3(u_ '
1+-2-electricflux-sectors-inHilbert spaceon—+

1 2 “magnetic” fluxes-onT

- the basic anomaly: O—periodicity anomaly (a1 1 Hooltvan Baai—= GKKS+

3. examples of mixed anomalies & implications

3.0

3.1 invertible symmetry in SU(N) with adjoint quarks (like super-YM)
3.2 noninvertible symmetry in SU(N) X U(1) with two-index S/AS Dirac quarks



3.1 SU(N) with nyadjoint Weyl quarks, for definiteness take SYM, n, = 1 below:

notation: Q,, = Jd4x Fi F{ etho = Jd4x o0 K*  with Jd3x1<0 =S,

3272

classical chiral U(1) 1 — e'*] “R-symmetry”

Out = Ou(A* 16" A") = 2ny N9, K" - R-current not conserved
J'u — f QTLfN[A('LL A
A A - ()5 conserved but not gauge invariant
— deng — fdgazj? —2n¢N [d’z K" (”f = 1)
auge Invariant operator
Q5 _ fd3XJ —zandeKO 9 9
XZN = "0 = ¢ W ¢ on discrete R-symmetry

L i2nfauw(AdA+.) P=1 _ Li%E i2n[;tr(AdA+..) S S R b
e I3 = €W e™in = T3 Xon T3 = 7% X,y

[2k, = on T° with m; = 1:  mixed 0-form/1-form anomaly




Ex 3.1: SYM on twisted T° - invertible chiral/center anomaly

Hilbert space with spatial ‘t Hooft twist n,, = my; = 1; SYM has two global symmetries,

YA% and )A(ZN, 1-form and O-form, invertible (=normal unitary operators on Hilbert space)
commute with Hamiltonian, but not with each other:

A A /\_1 - 1271- A > A o B
I35 Xon T = 7'V Xy Xon|E e;) = |E,eq— 1)
action of chiral symmetry changes e; flux of state but not energy

all energy levels on the twisted T3 are N-fold degenerate,
exact degeneracy at any finite volume, provided n,, = m; = 1! [Cox, Wandler, EP 2106]

unusual in QFT!

different from topological order (e.g. Z, in superconductors)
where degeneracy only in “topological scaling limit”



Ex 3.1: SYM on twisted T° - invertible chiral/center anomaly

Hilbert space with spatial ‘t Hooft twist n,, = my; = 1; SYM has two global symmetries,

YA% and )A(ZN, 1-form and O-form, invertible (=normal unitary operators on Hilbert space)
commute with Hamiltonian, but not with each other:

A A /\_1 - 1271- A > A o
action of chiral symmetry changes e; flux of state but not energy

all energy levels on the twisted T3 are N-fold degenerate,

exact degeneracy at any finite volume, provided n,, = m; = 1! [Cox, Wandler, EP 2106]

as volume goes to infinity, if theory confines (center unbroken) clustering ground states are the
lowest energy degenerate flux states, related by broken discrete chiral symmetry
here, a consequence of the mixed anomaly, not SUSY!

gaugino bilinear phase in different flux sectors: (E,e;|trAd | E, e5) = el N (E,ey+ 1|trAd|E,e5 + 1)
degeneracy does not require SUSY, similar degeneracies in non-SUSY QCD(adj) [Cox, Wandler,
EP 2106]

exact degeneracies less severe if gauge group has smaller center... SP, Spin, E6, E7



Ex 3.2: SU(N) X U(1)+ S/AS Dirac - noninvertible chiral/center anomaly

[Anber, EP 2305]
gauged global classical chiral

(SU(N),U(1),U(1)y) + global Z{V 1-form center: 7; now are SU(N) gauge trfs periodic up to center
/ . . o
w N ( R 1 1) simultaneous with U(1) gauge transforms periodic up to Z, c U(1)
i Y (to make transformed fermions single valued on the torus)

%:z 7 (Rv —1, 1)
dp = Y= for S/AS (0) .

2 | in the non-gauged U(1) (vector) case, U(1), — Z’ by anomaly (like SYM)
TR = N £ 2 R

. (0) “N AN ihla? 7(0)
with gauged U(1), ZZTR becomes “noninvertible ZZTR

to see, integrate anomaly equation to find conserved charge operator:

- 2dR VoA o
Oy — 2TROLK g7y o €une0'a’0a’ = 0

| |

U(1),SUN) U(1),U(1)7




in the non-gauged U(1) (vector) case, U(1), — Zz((}l by anomaly (~ SYM)

. (0) “N0ni ihle” 70
with gauged U(1), Zyp becomes “noninvertible Zyr

to see, integrate anomaly equation to find conserved charge operator:

2dR
2

Opdy — 2TROWK gy EpneO'a’0ta” = 0

) 87
SU(N)/CS U(1) CS

Ry = / A’z [Jg — 2TR[(OS(A> — QdRKO(CL)] + bOUndary terms [depend on U(1)] due to twists of b.c. (not shown)
T3

Xop, = S @ gauge invariant under large SU(N) gauge transforms (exactly as in SYM)

in the absence of dynamical U(1) fields, Z,, C U(1), is anomaly free invertible (i.e. acts as a normal
unitary operator) global symmetry



in the non-gauged U(1) (vector) case, U(1), — Zz((}l by anomaly (~ SYM)

. (0) “N0ni ihle” 70
with gauged U(1), Zyp becomes “noninvertible Zyr

to see, integrate anomaly equation to find conserved charge operator:

2dp

8 2

ij fé o QTRQLK gU(N) -

euy,\aﬁ“a”&\a” — ()

SU(N)/CS U(1) CS

Ry = / A’z [Jg — 2TR[(OS(A> — QdRKO(CL)] + bOUndary terms [depend on U(1)] due to twists of b.c. (not shown)
T3

Xop, = S @ gauge invariant under large SU(N) gauge transforms (exactly as in SYM)

but under large (winding) U(1) trfs a; — a; — 9;\, with A(z + &;L;) = A(z) + 27n; X,r.changes:

—i27|n. ”Tl—ﬁ(ﬂyz +2Zm,) + cyclic(x - y — z)

X5 [A, a — = X, [A _
2TR[ ? a dﬂ/] 2TR[ ? a] e I \background for Z](\})
integer (quantized U(1) " 2rm,

W|nd|ng number of U(1) trfm magnetic flux In VZ plane) SD ddeByZ N (mOdzﬂ)




Zz((}l operator not gauge invariant for n, . # 0:

XZTR[A’ d — dﬁ] — XZTR[A’ Cl] €

define noninvertible 2(2(2 operator = sum over large U(1) gauge transforms  (karasi; igbal, Garcia Extebarria 2022
R
d other ways...appear equivalent [Choi, Lam, Shao; Cordova, Ohmori 2022,

—127 [nx i—?(ﬂyz -+ %mx) + cyclic(x — y — z)

- 2z —i2an. SRy +2 .
Xor, = e e Z e~ TR | o (cyclic(x = y = 7))

nez

dR( 2 )
—(U,,, m.)) € /
T > N °

- all other sectors are annihilated by XZTR ; thus it Is a kind of projection operator - no inverse
- "noninvertible” discrete Z,;, chiral symmetry

- XZTR acts as a unitary gauge invariant operator in sectors of Hilbert space




summary, Ex.2:

gauged global
(SU(N),U(1),U(1)y)

wR ™ (R7 17 1)
%DR ~ (R7_171)
Th = N +2

dp = YED for S/AS

2

for us, on T°, noninvertible Z(z? operator is:
R

Y iz?r7T X dp
XQTR — € “'R ,when [ = T

F—m.) € Z (+ cyclic
(Hy, Nx) (+ cyclic)

— O, otherwise

commutation relation with Z{" (easily computable from all above!);

v -1 _ v —i2n(5E—=1)
Iy Xor, Iy = Xop, € 70NN

\ I | = ?R(”yz +—m) €7

mixed anomaly!

as in SYM, if phase not unity
—> degeneracy!

*exact on any torus”®
*between ZZE} flux sectors*

Z]S) in x-direction



summary, Ex.2:

gauged global
(SU(N),U(1),U(1)y)

Yr ~ (R,1,1)
Yp~ (R, —1,1)

dp = YED for S/AS

2

- degeneracy due to mixed center/noninvertible chiral seen on

for us, on T°, noninvertible Z) operator is:

— O, otherwise

2T,

dR :
,when [ = T (4, - me) € 7 (+ cyclic)

commutation relation with Z{" (easily computable from all above!);

Tx XZTR Tx_l

A

(1
Zy

) in x-direction

\ —127z(—x——l )
XZTR € dp 2

= — +—m,)e ”/
I - TR('MyZ N »

mixed anomaly!

as in SYM, if phase not unity
—> degeneracy!

*exact on any torus®

torus with specific flux sectors (not seen in others!); holds at any size *between zj{fl flux sectors*

- Infinite volume limit expected independent of b.c.,
- degeneracy should persist: implies symmetry breaking

first (only?) class of 4d examples of anomaly involving noninvertible + dynamical consequence!
obtained using only pedestrian old-fashioned tools...

[Anber, EP 2305]



summary:

Studying a gauge theory on torus with twisted b.c.
(=in 2-form background fields for the 1-form symmetry)
Is a powerful probe of the dynamics, especially in the presence of anomalies.

Mixed anomaly of invertible or noninvertible chiral symmetries with center symmetry implies exact
degeneracy of flux sectors, which remains in infinite volume limit.

Cartoon picture to remember:

A.) no anomaly: lowest energy in e; # 0 flux sector — oL — oo

7 L E163=0> ] EO 7 S T - ’es:"; €203
L ) N b Y
L d = ol

€,=0 7 €202 217 le}/
| / higher flux

sectors decouple at L. — oo confining
string tension

(lattice!)

[Teper, Stephenson;
Gonzalez-Arroyo,...1990s]

torus with 2-form background (any),
upon Iincreasing size 1o oo



summary:

Studying a gauge theory on torus with twisted b.c.
(=in 2-form background fields for the 1-form symmetry)
Is a powerful probe of the dynamics, especially in the presence of anomalies.

Mixed anomaly of invertible or noninvertible chiral symmetries with center symmetry implies exact
degeneracy of flux sectors, which remains in infinite volume limit.

Cartoon picture to remember: for Z, valued anomaly

B.) anomaly: lowest energies of e; = 0, e; = 1 flux sectors remain equal

M

e =

’63“O> © AN L_

,., L J
3:O> s \ |€3:’l> [C;/
I / interchanged by chiral symmetryVL < oo

torus with 2-form background (or parity, in pure YM at 6 = z)
(the one revealing anomaly!),
upon Iincreasing size 1o oo

le c S
y




summary:

Studying a gauge theory on torus with twisted b.c.
(=in 2-form background fields for the 1-form symmetry)
Is a powerful probe of the dynamics, especially in the presence of anomalies.

Mixed anomaly of invertible or noninvertible chiral symmetries with center symmetry implies exact
degeneracy of flux sectors, which remains in infinite volume limit.

Cartoon picture to remember: for Z, valued anomaly

B.) anomaly: lowest energies of e; = 0, e; = 1 flux sectors remain equal

M

e =

’63:‘0> o AN L_

J/ x
=0 > l€}=0> \ |€3=1> [63/
y =

interchanged by chiral symmetryVL < oo

/IL\_ E - = 7 N
Y

infinite L, iIf center unbroken: these are the clustering vacua, chiral broken



summary:

Studying a gauge theory on torus with twisted b.c.
(=in 2-form background fields for the 1-form symmetry)
Is a powerful probe of the dynamics, especially in the presence of anomalies.

Mixed anomaly of invertible or noninvertible chiral symmetries with center symmetry implies exact
degeneracy of flux sectors, which remains in infinite volume limit.

Cartoon picture to remember: for Z, valued anomaly

B.) anomaly: lowest energies of e; = 0, e; = 1 flux sectors remain equal

M

e =

’63“O> © AN L_

L J é
J
€,=0> [€3:0> \ €,=12 (€315

interchanged by chiral symmetryVL < oo

2
> two vacua exchanged ﬁ > ( %7 >
M ( '{_ _ — /”_‘-- -
= s |
€, :n

ol by 7A“3—center

le c S
y

SN

infinite L, if center broken: [ fﬁ Dot ( B
deconfinement (z, example)

€37O e_s" I



outlook:

what | worry about presently...:

- there is a lot of more mathematically oriented work on noninvertible
symmetries, does it also allow more pedestrian ways (so | can look at)?

- some puzzles about infinite volume limit vs finite torus dynamical

calculations in supersymmetry, notably the ones presented by the gaugino
condensate computed with 't Hooft fluxes (works with Anber, EP 2210, 2307;...)

...beyond me, but interesting:

- the exact degeneracies may be useful for lattice studies (twists are trivially

put on lattice) especially if they ever approach 6 ~ = regime of pure YM or
tackle exact chiral symmetries

- IS It useful for Constraininglstudying real world (real or imagined, e.g. BSM) theories?

- what are the most general consistency conditions following from all possible
anomalies in a given theory? (as we saw, things were missed 1980 -> 2014!)



technical back up slides



a quick intro to poor man's twisted bundle

3 T Ar=Qy(Az — id)Q!

Ap = QA —id)Q!

't Hooft ~71980



a quick intro to poor man's twisted bundle
€2,(x7)
L\ T Ap= QA — id)Q!
2

Ap = QA —id)Q!

| K.
\ _ o
Xz () Ap = 8r(Ag — l.d)gRl
i 4 B Ly A; = g1(Agp — ld)gL_
% _
™\ —> ;| = gRglng

't Hooft ~71980



a quick intro to poor man's twisted bundle

,(x))
L\ T A”P right — Ql(LZ)QZ(O)(AbOﬂOm left — id)(Q1(L2)Qz(O))_1
——
XZ i » Ql(xz)
B L1
’ ‘*>X\

't Hooft ~71980



a quick intro to poor man's twisted bundle

€2,(x;)
L\ T A”P right — Ql(LZ)QZ(O)(Abottom left — id)(Q1(L2)Q2(O))_1

Au right — Qz(Ll)Ql(O)(Abottom left ld)(QZ(Ll)Ql(O))_l
K.

L t
_> \
X2 Q1(362) in center of G
4 B Ly
1 /

X\
single-valuedness — Q,(L,)Q,(0) = e'* Q,(L,),(0)

't Hooft ~71980



a quick intro to poor man's twisted bundle

wr = Q2 yyp for U(1): g=charge
L, T Ap = Qy(Ag — id)5251 for SU(N):
“g=N" - adjoint(same as A)
Ap = QA —id)Q7!  q=1-1una.
3 R. g=2 - 2-index S/A

YR = ch YL

— Q,(L,)Q2,(0) = e'* Q,(L,)Q,(0)

. - T .
for U(1) and nonzero q: €'* = e'« "2 ; for U(1) and q=0, any ¢'*



a quick intro to poor man's twisted bundle

wr = Q2 yyp for U(1): g=charge
» T Ar=Q)(Ap — id)Q;! for SUN):
“g=N" - adjoint(same as A)
Ap=Q (A, — id)ﬂl_l qg=1 - fund.
3 R. g=2 - 2-index S/A

YR = ch YL

— Q,(L,)Q2,(0) = e'* Q,(L,)Q,(0)

. - T .
for U(1) and nonzero q: €'* = e'« "2 ; for U(1) and q=0, any ¢'*
2T

for SU(N)+adjoint: € = X2 + SUN)+fund.-e'® = 1; SU@RKSIAS:e'* = e



a quick intro to poor man's twisted bundle

for U(1): g=charge

for SUN):
“g=N" - adjoint(same as A)
qg=1 - fund.
q=2 - 2-index S/A

o 't Hooft twisted b.c., one per 2-plane

a, Ny, etc. are gauge invariant data

different choices of €. with same o Ap = gp(Ap — id)gr!
are gauge equivalent . _1

| —> ;= gRQIgL
. 271' .
for U(1) and nonzero q: €'* = e'« "2 ; for U(1) and q=0, any ¢'*
27r

for SUN)+adjoint: e'* = e' ¥ "2 ; SU(N)+fund.:ei0‘ — 1 : SURKISIAS:e'* = ¢



a quick intro to poor man's twisted bundle

o 't Hooft twisted b.c., one per 2-plane

a, Ny, etc. are gauge invariant data
_ Vo=
Y GKKS+: backgrounds for 1-form symmetry Ag = 8r(Ag — 1d)8g
(2-form gauge field background) Al = g1 (Ag —id)g; =
— ) = gRQIgL

— Q,(L,)Q2,(0) = e'* Q,(L,)Q,(0)



a quick intro to poor man's twisted bundle for U(1),nonzero q:

. 2
WYr = Qq Yp el — el_ﬂnlz

_ o nO-1 |
T Ar= (A —id)th for U(1) and g=0, any e'*

L2
for SU(N)+adjoint: |
Ap = QA —id)Q! ol — el—”nlz
- > wr = Q7w for SU(N)+fund.: e =1
Ap = gp(Ap — id)gy!

X2
i 4 B Ly A; = g1(Agp — id)g_l
>

. | = Q, = gzQg;"

: 21
For g’s allowing e'® # 1, all b.c. invariant under: Q; — e'¢" Q.. 1. € Z(mod q)

(regardless whether we take nontrivial o)



a quick intro to poor man's twisted bundle for U(1),nonzero q:

. 2
Yr = Qq VB el — el_ﬂnlz

T Ar=Qy(Ap — id)Q!

Lg for U(1) and g=0, any e
for SU(N)+adjoint: |
Ap = QA —id)Q! ol — el—”nlz
- : wr = Q7w for SU(N)+fund.: e =1
Ag = grlAg — id)gg'

X2
l 4 B Ly A; = gL(A — id)g_l
>

A\ , = Q, = gxQ,g;"
: 27T
For q’s allowing e'" # 1, all b.c. invariant under: £2; — elal Q. . € Z(mod q)

; Z g/obal symmetry, but only acting on transition functions in i-th direction
.. Strange... what more physical does it act on?



a quick intro to poor man's twisted bundle for U(1),nonzero q:

wr = 2 wp o0 — elﬁnlz
_ I ~1 ,
Ly T Ar= (A —id)th for U(1) and g=0, any e"*
| 1 for SUN)+adjoint:
Ar = QA — id)Q2T ol — el_nlz
- > wr = Q7w for SU(N)+fund.: e =1
Ap = gp(Ap — id)gy!

X2
i 4 B Ly A; = g1(Agp — id)g_l
>

. | = Q, = gzQg;"

: 21
For g’s allowing e'® # 1, all b.c. invariant under: Q; — e'¢" Q.. 1. € Z(mod q)

. oR iﬁ
winding Wilson loops! ¢€.g.. W, = tr(e''tt Q) @ W) — e' 11W1




Crucial observation ('t Hooft)

idea only (details are plentiful... see eg appx of 2106 paper w/ Cox, Wandler)

Vo

15, the Zji}) generator in the direction

1 1
orthogonal to the (12) plane of the twist Q = = / tr FAF = = / d*x ), Fy e = / d*z0, K"
n
has winding number Q = %(mod Z)

integrand a total derivative, Q only depends on transition functions

for a 4d field configuration twisted by 75 (denoted C) in time
T(x

Alx=8) = Alx,-0)* and n,, in space:
— /
i Q= 2 +Z 1 e
/} / 7 Q) = 55 n (CdC™)
l
(5 /r ‘ a direct calculation (only requires cocycle conditions,
: N5 | good gauge choice, not explicit form of C=T_3), then gives
-1~ 77
= N /JL,!(XJ
a — Q = —(mod Z) = winding of T3(x) as map T° — SU(N)
7 i \ N
2 A (x> 0)
T w/ n,, = 1 considering 4d field configuration is a clutch ('t Hooft);
equiv., can explicitly construct 75(X) and compute winding...

[Garcia Pérez, Gonzalez-Arroyo ‘92; Selivanov-Smilga ’00; Wandler-EP 2211]



't Hooft: center-symmetry generator “along” 7 has fractional 7° — G winding

a picture (J. Greensite’s demand) to illustrate fractional winding (holds in our “good” constant-1'; gauge )
Ko~ XA, Y ~3+(,z~ Z £ |

— N\ 2, 2
SU2), m=(0,01), T,(xyz): T —> S = sulz

e

J Sz - SZ
, 2
Stz yMe R (woge f T = (X9
angle ¢, only € (0,7x) SLé 53((0(, S(}_‘Z.)

R A

Y,z Sium2x 5l X & Lf—g(j)%(wg)
kj; ~ Shhnz2z *xWSTX r (‘//S:(‘j),g,((*v) L ~ S B (full range)
= w2 f LTy - $Ty9)

/

angle vy, full range (\M ye O, | ~ (o5 74

(explicit form of YA’3(x, y, 2) from Wandler, EP ’'22)



