

LBNF target studies: graphite core density & Δz gaps

John Back University of Warwick

07 Dec 2023

DUNE-doc-29702

Introduction

- LBNF graphite cantilevered target neutrino flux & energy deposition studies
 - Changing graphite core density: 1.74 to 1.94 g/cm³ in 0.02 g/cm³ steps
 - Introducing small Δz gaps between graphite core sections (for thermal expansion)
- G4LBNF simulations: graphite target, 3 focusing horns (A, B, C), hadron absorber etc.
 - **Cantilevered target**, double-cone Ti support structure with He cooling
 - Proton beam: **120 GeV, 1.2 MW**; QGSP_BERT hadronic model
 - **Target core:** r = 8 mm, **L = 1.5 m** (minimum) & **1.8 m** (aspiration)
 - Bafflet graphite density fixed at 1.78 g/cc (POCO); Horn currents I = 300 kA
- FLUKA (CERN v4-3.4) energy deposition simulations: graphite target & horn A
- Plots of **unoscillated** v **signal** & **bkgnd fluxes** extrapolated to far detector
- Plots of **CP sensitivity & exposure** (run time x far detector 40 kt mass)
 - GLoBES, NuFit 4.0 parameters, normal neutrino mass ordering
 - No beam power staging from 1.2 MW to 2.4 MW

G4LBNF geometry: target & horn A

Neutrino signal mode: v_{μ} (left) & anti- v_{μ} (right)

Neutrino wrong sign background: anti- v_{μ} (left) & v_{μ} (right)

CP sensitivity for L = 1.5 m, ρ = 1.78 g/cm³ (POCO) 3.5 v + 3.5 anti-v run years, 1.2 MW, 1.1x10²¹ POT/year

CP sensitivities: 75% δ_{CP} range, **3.5+3.5 run yrs**, 1.2 MW

CP sensitivities: 75% δ_{CP} range, **15+15 run yrs**, 1.2 MW

CP sensitivity vs exposure

Extra run days per year to match **L** = **1.5 m**, CP σ = **1.85**

 $\Delta \tau$ extra days/yr = fractional exposure change x 208 days; same **40 kt** far detector mass, 1.2 MW

Extra run days per year to match **L** = **1.5 m**, CP σ = **3.0**

Δt extra days/yr = fractional exposure change x 208 days; same **40 kt** far detector mass, 1.2 MW

Graphite core: 4 sections with Δz gaps

Neutrino signal mode: v_{μ} (left) & anti- v_{μ} (right)

Neutrino wrong sign background: anti- v_{u} (left) & v_{u} (right)

CP sensitivities: 75% δ_{CP} range, **3.5+3.5 run yrs**, 1.2 MW

CP sensitivities: 75% δ_{CP} range, **15+15 run yrs**, 1.2 MW

FLUKA power deposition: target & horn A

No Δz gaps in target core. Beam Power = 1.2 MW

Deposited power: target core & outer container

Deposited power: flow guide & DS beam window

Deposited power: bafflet & target support fins

Deposited power: horn A inner & outer conductors

Deposited power: horn A downstream end & water

Summary

- Physics impact of LBNF target core graphite density & Δz gaps
- Higher graphite densities increase neutrino flux
 - High density L = 1.5 m approaches low density L = 1.8 m
 - More low energy neutrinos (especially for 2nd osc max)
 - Reduced wrong-sign backgrounds for $E_v > 0.5 \text{ GeV}$
- Small Δz gaps between 4 graphite core sections
 - ~ \pm 1% changes in v flux, no significant changes in CP sensitivity
 - OK to have $\Delta z = 1$ mm to allow for thermal expansion
- Energy deposition scales linearly with core graphite density