

First detection of CEvNS on germanium by COHERENT

Janina Hakenmüller for the COHERENT collaboration

Duke University

JEPT (Wine and Cheese) Seminar, Fermilab, 1st of March, 2024

Coherent elastic neutrino nucleus scattering (CEvNS)

no coherence

- standard model interaction, flavor blind, no energy threshold
- predicted in 1974: D.Z. Freedmann, Phys. Rev. 9 (1974) 5
- first detected in 2017: COHERENT experiment
 → Csl detector at pion decay-at-rest source
- detection at nuclear reactor (lower v energies) still pending
- cross section large compared to other neutrino interactions (e.g inverse beta decay)

$$\frac{d\sigma}{d\Omega} = \frac{G_f^2}{16\pi^2} \frac{(N - (1 - 4\sin^2\theta_W)Z)^2 E_{\nu}^2 (1 + \cos \theta) F(Q^2)}{\text{nucleus}}$$
nuclear form factor

 $F(Q^2) \rightarrow 1 \text{ for } Q^2 \rightarrow 0$

coherence condition:

1

λ(mom. transfer Q) > size of atom => $σ ~ (#scatter targets)^2$ → upper limit on neutrino energy:

$$E_{\nu} \leq \frac{1}{2R_A} \approx \frac{197}{2.5\sqrt[3]{A}} \quad (MeV)$$

 R_{A} =radius, A= mass number

E_{max}≤50 MeV (for medium A)

neutrino sources: spallation source supernovea nuclear reactor radioactive decay

2 / 34

Motivation

- stellar collapse: 99% energy released in neutrinos
 - \rightarrow burst modeling
 - \rightarrow detect on Earth

Efremenko, Yu, and William Raphael Hix. JPCS, Vol. 173. No. 1. IOP Publishing, 2009.

 "neutrino floor/fog" in dark matter experiments: signature like dark matter → same detector response

Motivation

• Weinberg angle at low energies

$$\frac{d\sigma}{d\Omega} \propto (N - (1 - 4\sin^2\theta_W)Z)^2$$

Cadeddu, M., F. Dordei, and C. Giunti. Europhysics Letters 143.3 (2023): 34001.

- neutron form factor F(Q²)
- nuclear safeguarding (non-proliferation)

non-standard neutrino interactions (NSI),...

Detecting CEvNS

Coherence condition:

 $\sigma \propto N^2 E_{
u}^2$ COHERENT CSI

5/34

large cross section
=> small detector (kg sized!)

Detection parameter: recoil of target nucleus

Z

 ν_{α}

(A,

COHERENT experiment

Neutrino Alley at Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, USA

Pion decay-at-rest source:

- pulsed proton beam with 60 Hz
- ~10²⁰ protons on target/d (POT) up to 1.7 MW power since this summer → about 0.29 v per POT
- background rejection factor by beam time structure

The COHERENT collaboration

We are grateful for logistical support and advice from SNS!

COHERENT CsI and LAr CEvNS results

COHERENT experiment

10

'n

20

30

several types of detectors $\rightarrow N^2$ dependence 10³ Cross section (10⁻⁴⁰ cm²) 10² Ge COHERENT measurements 10 SM prediction Na FF = unity Klein-Nystrand FF

40

Neutron number

50

60

70

80

90

CEvNS on Germanium at SNS

Ge-Mini

PROTON BEAM

COH-Ar-750 NaI3T

(ICPC)

National Science Foundation PHY-1920001 distance to target: (19.1+-0.1)m former CsI location Hg TARGET SHIELDING MONOLITH CONCRETE AND GRAVEL MITPOGEN NI NIN cubes, Nal185kg D_2O NuThor Gemini In total eight high-purity Germanium diodes: core • mass per detector: Ge excellent ~2.2 kg (~96% active) energy resolution: • inverted (semi) coaxial ~110-150 eV FWHM pulser resolution/noise point contact transistor reset 11/34 preamplifier (TRP)

Drift time evalution

Simulated driftime map (µs)

with siggen by D. Radford (simulation made by NCSU undergrad Hana Jones)

Drift time evalution

Driftime measurement with ²²⁸Th source and a BGO detector:

Ge-Mini: Timing spectrum

Simulation: homogeneous distributions of interaction vertices <u>Measurement:</u> includes electronics response

combined for timing pdf

=> background suppression by beam correlation of 7*10⁻⁴

All neutrinos arrive within 12 μ s!

Commissioning: 5/2022-5/2023

0

Data collection Campaign-2

collected waveform after baseline correction:

(Campaign-1: winter 2022) Campaign-2 physics run: 6/21/23 - 8/15/23

Data acquisition: Rdigdaq: HPGe and muon veto readout ORCA: slow controls

internally triggered: calibration

blinded beam windows background windows

176 μs, 125 MHz sampling

Ge-Mini: Data cuts

Ge-Mini processing

collected waveform after baseline correction:

Pulse height ↔ energy: trapezoidal filter with weekly optimized parameters

ENERGY

threshold externally triggered

Ge-Mini processing

collected waveform after baseline correction:

21/34

- 1750

1500

1250

- 1000

750

500

250

4.0

Ge-Mini: Data cuts

22 / 34

Ge-Mini: Background spectrum

 * internally triggered spectra of the three detectors without efficiency loss above 1.5 keV $_{\rm ee}$

Passive shield: survival fraction: 10^{-2} - 10^{-3} Pb, Cu \rightarrow ext. electro-magnetic radiation (nat. radioactivity, muon-induced, contaminations)

HDPE \rightarrow neutrons (muon-induced, beam) Active muon veto: survival fraction: ~10⁻¹

 μ^{+}

 μ^{+}

internal triggering

 μ^{+}

Ľ

μ

Ge-Mini: Background spectrum

 * internally triggered spectra of the three detectors without efficiency loss above 1.5 keV $_{_{\rm PP}}$

External triggering:

Beam correlation:
 10 μs window: 6*10⁻⁴ (counting analysis)
 40 μs window: 2.4*10⁻³ (fit)
 => background comparable to
 ~1000 rock overburden!

- Beam-correlated background:
 - beam-related neutrons: (0.55±0.18) counts (MCNP sim.)
 - neutrino-induced neutrons:
 <0.01 (extrapolated from CsI result)
- => less than 5% of CEvNS signal

Background description for fit: Energy pdf: internally triggered data → no efficiency loss at lower energies above 1.5 keV_{ee} Timing pdf: uniform distribution as confirmed from data

Ge-Mini: Campaign-2

Five stable detectors: total mass 11.07kg

Ge-Mini campaign-2 exposure

Total exposure: 7.47 GWh*kg (after all cuts including beam stability) Mean total number of produced neutrinos: 3.8*10²¹

2d PDFs for likelihood fit

unbinned 2d likelihood fit in time and energy simultaneous for background and beam data

Background

Ge-Mini: CEvNS result

First CEvNS detection on germanium!

27 / 34

Ge-Mini: CEvNS result

Fit result:	Null hypothesis rejected by 3.9 sigma !			Counting analysis:
	CEvNS signal:	18.4	- 5.9 + 6.7 (stat)	S/B ~ 1
	beam-related neutrons:	0.55	± 0.18 (input)	18.0 ± 7.7
	steady-state background: (40 μs window)	143.8	- 8.6 + 9.0 (stat)	

Standard model prediction:

25.2 \pm 2.6 (ratio to data: 0.73 \pm 0.26) agreement within 1 sigma!

First CEvNS detection on germanium!

COHERENT: ongoing and future

Ge-Mini outlook:

- analysis: lower analysis threshold, remove more background by rise time cut
- data taking: stabilize all detectors

higher precision! more isotopes!

[1] D. Akimov et al. Science 357 (2017) 6356, 1123-1126
[2] D. Akimov et al. Phys. Rev. Lett. 126, 012002, 2021
[3] D. Akimov et al. Phys. Rev. Lett. 129, 081801, 2022

CEvNS	Csl 2017 [1] 2022 [3]	LAr 2021 [2]	Ge 2023
mass/kg	14.6	24	11.1
exposure/GWh	7.48 13.99	6.12	3.37
nuclear recoil threshold/keV _{nr}	5	20	7.5
Significance (sigma)	6.7 11.6	3.5	3.9

- + limits on NSI parameters
- + accelerator-based dark matter searches D. Akimov et al .Phys. Rev. D 106 (2022), 052004 202 D. Akimov et al. Phys.Rev.Lett. 130 (2023) 5, 051803
- + charged-current neutrino interactions P. An et al., Phys. Rev. D 108, 072001 P. An, et al., arXiv:2305.19594 (2023) (accepted at PRL)

reduce systematics, higher mass, more neutrinos!

more interactions beyond CEvNS!

Towards

precision

detection!

CEVNS

Towards precision CEvNS

Predicted development based on: SNS planned schedule: https://neutrons.ornl.gov/hfir/hfir-sns-5-year-working-schedule D₂O: planned operations

=> exploration of the CEvNS shape: neutron form factor, Weinberg angle,....

COHERENT: charged current (CC) results

Neutrino Cubes (Pb, Fe):

neutrino-induced neutrons on Pb

P. An et al., Phys. Rev. D 108, 072001

Sam Hedges, JEPT (Wine and Cheese), 12/2024

Higher energies!

- 185 kg Nal(Tl) scint. Crystals
- deployed in 2016
- charged current on I: ${}^{127}I(v_{e},e){}^{127}Xe$
- → 5.8 σ evidence of CC events
 ~41% of nominal Marley prediction (with supplied GT strength)

31/34

COHERENT ongoing and future

Lighter nuclei!

Nal scintillating crystals (TI dopes): since 2016: Nalve 185 kg \rightarrow increase to 3.4t NalvETe \rightarrow CEvNS on Na, I

COH-Ar-10 (24kg, 20keV_{nr}):

More mass!

SHEET METAL WATER TANKS WITH SIPHONS, 16ga SS

~3 times more statistics to first result charge current analysis **COH-Ar-750:** ton-scale (~750/600 kg)

SNS future

Background rejection factor (μ dk) 10^{2} **SNS** LANSCE Area A: 0.77 GeV, 0.8 MW ISIS: 0.75 GeV, 0.16 MW BNB: 8 GeV, 0.032 MW MLF: 3 GeV, 1 MW Lujan: 0.8 GeV, 0.08 MW 10^{1} ESS: 2 GeV, 5 MW Daedalus: 800 MeV, 7 MW SNS FTS: 1.01 GeV, 1.4 MW ····· SNS FTS upgrade: 1.3 GeV, 2 MW --- SNS STS: 1.3 GeV, 0.7 MW SNS STS+FTS: 1.3 GeV, 2.8 MW 10^{0} 107 10^{6} 10^{8}

Snowmass contribution: arXiv:2204.04575v1 [hep-ex] 10 Apr 2022

Total neutrino flux at 20 m (cm⁻² s⁻¹)

- exploration of new locations
- Proton Power Upgrade (PPU, 2024) beam energy: 1.0 GeV \rightarrow 1.3 GeV, beam power: 1.4 MW \rightarrow 2.0 MW
- Second Target Station (STS) (expected completion: early 2030s)

Summary and outlook

Coherent elastic neutrino-nucleus scattering (CEvNS):

→ coherency condition fullfilled (<50MeV) (spallation source, nuclear reactor,...) → neutrino interacts with all nucleons in nucleus, enhancement of cross section ($\sim N^2$) motivation: neutrino floor, supernova burst, Weinberg angle, NSI,... => detecting CEvNS = detecting a tiny recoil

COHERENT at SNS: nuclear recoil in Ge <~20keV

detection 2017 with CsI (first ever)

detection 2021 with LAr

2023 (Ge-Mini): First detection of CEvNS on germanium!

- signal/background ~ 1/1
- number of CEvNS counts: 18.4 5.9 + 6.7
- rejection of null hypothesis at 3.9 sigma, 1 sigma agreement to standard model

upcoming: NalvETe, COH-Ar-750, power upgrade of SNS, Second Target Station,... inelastics campaign: argon, D₂O,...

