

Comp Graph Module for protoDUNE-VD PDS

Shuaixiang (Shu) Zhang Indiana University ProtoDUNE PDS Sim/Reco meeting Jan 8, 2023 (Mon)

Details of New Training

- Results of last training: <u>https://indico.fnal.gov/event/62064/</u>
- Updates:

Training set: $100,000 \Rightarrow 500,000$ Evaluation set: $10,000 \Rightarrow 100,000$

- Network & hyper-parameters are the same
- Evaluation events distribution:

Evaluation of collective performance

Evaluation of Single optical channel

Bias Distribution

Previous training (last presentation)

[-0.1, 0.1]: 8,048 (86.2%), [-0.2, 0.2]: 8,745 (93.6%)

 $[-1.\,0,1.\,0]{:}\,\,9,319~(99.\,8\%)$

New training (this presentation)

[-0.1, 0.1]: 82, 293 (88.5%), [-0.2, 0.2]: 90, 003 (96.8%)

[-1.0, 1.0]: 92, 850 (99.8%)

Photon Num distribution of Evaluation Set

- Since this page, the analyses are based on the **new** training
- Results here are based on GEANT4 simulation

event in [0, 100] : 6
event in (100, 1000] : 644
event in (1000, 10000] : 44645
event in (10000, 100000] : 46498
event in (100000, 1000000]: 1397

Events Distribution in the Space

For each event, the number of photons received by all optical channels is labeled

Comp Graph Module vs GEANT4 (I)

- Emul: Results from trained comp graph module
- Simu: Results from GEANT4, the "true" results

-6-

Emul – Simu Bias =Simu

Comp Graph Module vs GEANT4 (II)

- Big bias events come from $\#\gamma \in [10^3, 10^4]$ and $\#\gamma \in [10^4, 10^5]$
- Small peak in Bias \in [-1, +1] can be explained by events close to field cage and other special regions

Big-biased Events Distribution

✤ Near field cage, back of optical channels, corners & beam pipe

Apply Cut to Bias distribution

♦ Preliminary Cut: $\#\gamma \ge 1,000 \mapsto$ negligible improvement

Evaluation of collective performance

Evaluation of Single optical channel

OpCh00: Events Distribution

This is still the events of evaluation set

-11-

OpCh00: Emul Counts & Bias

-12-

OpCh00: Big Bias Events in Space

Region away from OpCh00: Across field cage, bottom left, bottom right & top left

OpCh00: Apply Cut

★ Results comparison (without cut): $\mu = -0.063$, $\sigma = 0.348$ (previous) $\Rightarrow \mu = -0.026$, $\sigma = 0.287$ (current) ★ Cut: Throw events with photon counts $< 100 \Rightarrow \mu = -0.007$, $\sigma = 0.134$

OpCh09: Events Distribution

-15-

OpCh09: Emul Counts & Bias

OpCh09: Big Bias Events in Space

Highly affected by field cage

OpCh09: Apply Cut

• Results comparison (without cut): $\mu = 0.012$, $\sigma = 0.173$ (previous) $\Rightarrow \mu = 0.004$, $\sigma = 0.163$ (current)

★ Cut: Throw events with photon counts < $100 \Rightarrow \mu = 0.0004$, $\sigma = 0.153$

OpCh38: Events Distribution

-19-

OpCh38: Emul Counts & Bias

★ Events with $\#\gamma < 10$ contributes a lot to big-biased events

-20-

OpCh38: Big Bias Events in Space

OpCh38: Apply Cut

♦ Results comparison (without cut): $\mu = -0.101$, $\sigma = 0.382$ (previous) $\Rightarrow \mu = -0.107$, $\sigma = 0.359$ (current)

♦ Cut: Throw events with photon counts $< 100 \Rightarrow \mu = -0.0342$, $\sigma = 0.165$

Bias Distributions of Different Photon Num Regions

Summaries

- Detailed evaluation methods developed
- New training has better performance over old training
- Applying proper cuts improves performance apparently
- Further steps:
 - 1. Determine the criteria of performance: How good is good?
 - 2. Further improve evaluation methods (Any suggestions is appreciated!)
 - 3. Expand evaluations to the left 37 optical channels
 - 4. Optimize current network (e.g change learning rate, hyper-parameters)
 - 5. Increase training samples: Current $500,000 \Rightarrow \sim 2,000,000$

Backups

X-Arapuca Labels in v4 geometry

Optical Channels positions: 40 302.18 417.61 149.65 0 302.18 -417.61 149.65 1 226.38 417.61 149.65 226.38 -417.61 149.65 3 205.65 258.525 0 -131.35 258.525 0 39.15 187.275 6 0 -297.85 187.275 205.65 112.025 8 0 -39.15 112.025 9 0 131.35 40.775 10 0 0 -205.65 40.775 11 -205.9 221 380.988 12 -205.9 -221 380.988 13 -205.9 221 -68.1242 14 -205.9 -221 -81.6884 15 -207.23 417.61 149.65 16 -207.23 -417.61 149.65 17 -281.7 221 380.988 18 -281.7 -221 380.988 19 -1- 20 -281.7 221 -68.1242

Cryo Boundaries

Xmin: -375 Xmax: 415 Ymin: -427.4 Ymax: 427.4 Zmin: -277.75 Zmax: 577.05 drift coordinate: 1 (X direction)

	×	21	-281.7 -221 -81.6884
	0 <mark>x=302</mark>	22	-283.03 417.61 149.65
Contraction of the second s		23	-283.03 -417.61 149.65
	2 x=226	24	-336.474 170 455.65
		25	-336.474 1.13687e-13 455.65
7		26	-336.474 -170 455.65
11	5	27	-336.474 170 353.65
	9 6 4	28	-336.474 1.13687e-13 353.65
	10 10	29	-336.474 -170 353.65
-158	• 13	30	-336.474 405.3 217.75
7	420 y	31	-336.474 -405.3 217.75
2		32	-336.474 405.3 149.65
15 33 31	29 25 18	33	-336.474 -405.3 149.65
A 21	28 27 24 x=-207	34	-336.474 170 -54.35
		35	-336.474 1.13687e-13 -54.35
₹36	x=-283	36	-336.474 -170 -54.35
¥39 ¥	358 20 22 30	37	-336.474 170 -156.35
₩38 55	•34 32	38	-336.474 1.13687e-13 -156.35
	9 37	39	-336.474 -170 -156.35

RSL, Abs & Reflectivity

Rayleigh scattering length:

118	services.LArPropertiesService.RayleighEnergies: [1.18626, 1.68626, 2.18626, 2.68626, 3.18626, 3.
	68626, 4.18626, 4.68626, 5.18626, 5.68626, 6.18626, 6.68626, 7.18626, 7.68626, 8.18626, 8.68626,
	9.18626, 9.68626, 10.1863, 10.6863, 11.1863]
119	services.LArPropertiesService.RayleighSpectrum: [1200800, 390747, 128633, 54969.1, 27191.8,
	14853.7, 8716.9, 5397.42, 3481.37, 2316.51, 1577.63, 1092.02, 763.045, 534.232, 371.335, 252.
	942, 165.38, 99.9003, 51.2653, 17.495, 0.964341

Absorption length:

For more details, refer to (dunegpvm) /dune/data/users/szh2/rsl_Nov2023/work/photonFull_module0_sim.fcl

Photon Spectrum of LAr

- Black: LAr, Red: GAr
- LAr: Peak @ 126.8nm, FWHM: 7.8nm [122.9, 130.7]nm Energy: Peak @ 9.78eV, FWHM: 0.602eV
- ★ Assuming Gaussian distribution: (µ, σ) = (9.78, 0.256)eV

Normal distribution [edit]

See also: Gaussian beam § Beam waist

If the considered function is the density of a normal distribution of the form

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}\exp{\left[-rac{(x-x_0)^2}{2\sigma^2}
ight]}$$

where σ is the standard deviation and x_0 is the expected value, then the relationship between FWHM and the standard deviation is^[1]

 $\mathrm{FWHM} = 2\sqrt{2\ln 2} \ \sigma \approx 2.355 \ \sigma.$

https://arxiv.org/ftp/arxiv/papers/1511/1511.07718.pdf https://iopscience.iop.org/article/10.1088/1748-0221/15/09/P09009/pdf

-3-

Χ

-Х-