Charge and light sensitivity analysis on oscillation parameters in DUNE Far Detector

Luis Gustavo, Ettore Segreto and Laura Paulucci UNICAMP and UFABC

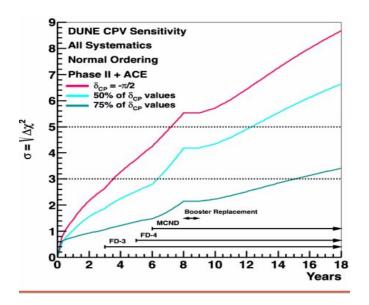
DUNE LBL Meeting
11 December 2023

Outline

- Goal: simulation using GLoBES for determining the oscillation parameters of the CPV and mass ordering.
 - ❖ Ancillary files from the article: "Experiment Simulation Configurations Approximating DUNE TDR" - > https://arxiv.org/src/2103.04797v2/anc
- Validate event rate and sensitivity with TDR using charge signal and smearing matrix.
- Use the gaussian energy function in GLoBES and analyse CPV sensitivity and mass ordering:
 - Charge signal ~ 14% energy resolution;
 - Charge + Light signal ~ 8% energy resolution.
- This is a preliminary work and further developments are expected.

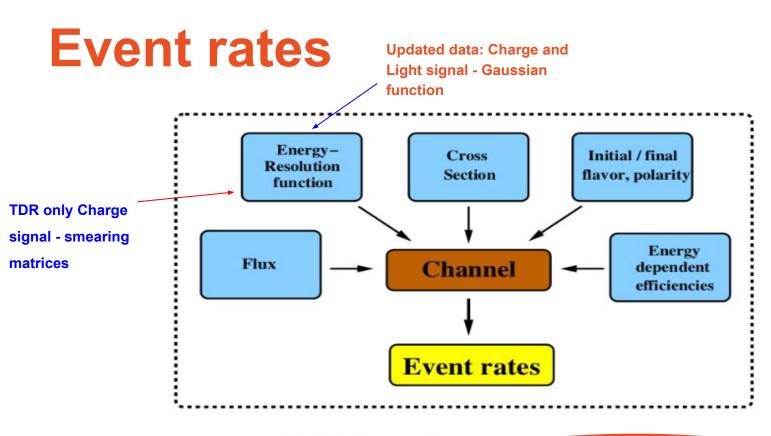
GLoBES Simulation

- First simulation: for validation with TDR Nominal deployment plan and the oscillation parameters from NuFIT 4.0 (2018).
 - Start of beam run: two FD module volumes for total fiducial mass of 20 kt, 1.2 MW beam
 - After one year: add one FD module volume for total fiducial mass of 30 kt
 - After three years: add one FD module volume for total fiducial mass of 40 kt
 - After six years: upgrade to 2.4 MW beam


	Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 4.7$)	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 \theta_{12}$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$
$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$
$\sin^2 \theta_{23}$	$0.580^{+0.017}_{-0.021}$	$0.418 \rightarrow 0.627$	$0.584^{+0.016}_{-0.020}$	$0.423 \rightarrow 0.629$
$\theta_{23}/^{\circ}$	$49.6^{+1.0}_{-1.2}$	$40.3 \rightarrow 52.4$	$49.8^{+1.0}_{-1.1}$	$40.6 \rightarrow 52.5$
$\sin^2 \theta_{13}$	$0.02241^{+0.00065}_{-0.00065}$	$0.02045 \to 0.02439$	$0.02264^{+0.00066}_{-0.00066}$	$0.02068 \rightarrow 0.02463$
$\theta_{13}/^{\circ}$	$8.61^{+0.13}_{-0.13}$	$8.22 \rightarrow 8.99$	$8.65^{+0.13}_{-0.13}$	$8.27 \rightarrow 9.03$
$\delta_{\mathrm{CP}}/^{\circ}$	215^{+40}_{-29}	$125 \rightarrow 392$	284^{+27}_{-29}	$196 \rightarrow 360$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV^2}}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.525^{+0.033}_{-0.032}$	$+2.427 \rightarrow +2.625$	$-2.512^{+0.034}_{-0.032}$	$-2.611 \rightarrow -2.412$

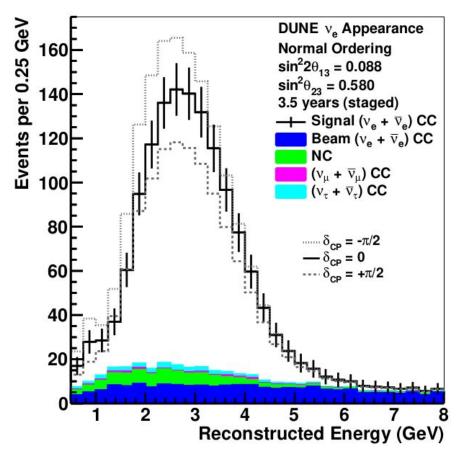
GLoBES Simulation

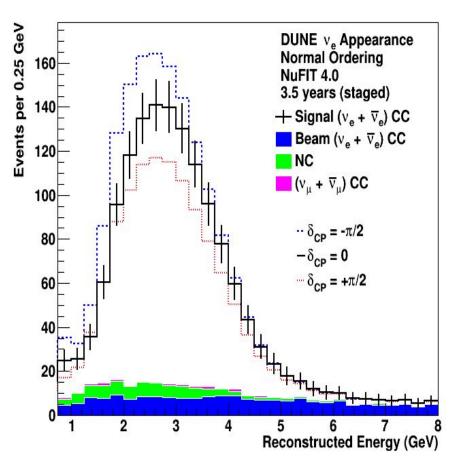
 Second Simulation: using the updated information about nominal deployment plan and implementation of the current value oscillation parameter from NuFIT 5.2 (2023).


	Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 2.3$)	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 \theta_{12}$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$
$\theta_{12}/^{\circ}$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$
$\sin^2 \theta_{23}$	$0.572^{+0.018}_{-0.023}$	$0.406 \rightarrow 0.620$	$0.578^{+0.016}_{-0.021}$	$0.412 \rightarrow 0.623$
$\theta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5^{+0.9}_{-1.2}$	$39.9 \rightarrow 52.1$
$\sin^2 \theta_{13}$	$0.02203^{+0.00056}_{-0.00059}$	$0.02029 \to 0.02391$	$0.02219^{+0.00060}_{-0.00057}$	$0.02047 \to 0.02396$
$\theta_{13}/^{\circ}$	$8.54^{+0.11}_{-0.12}$	$8.19 \rightarrow 8.89$	$8.57^{+0.12}_{-0.11}$	$8.23 \rightarrow 8.90$
$\delta_{\mathrm{CP}}/^{\circ}$	197^{+42}_{-25}	$108 \rightarrow 404$	286^{+27}_{-32}	$192 \to 360$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \ {\rm eV^2}}$	$+2.511^{+0.028}_{-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498^{+0.032}_{-0.025}$	$-2.581 \rightarrow -2.408$

- We do not take into account:
 - Near Detector configuration;
 - Approximately 1 year which the experiment could be stopped for the beam upgrade.

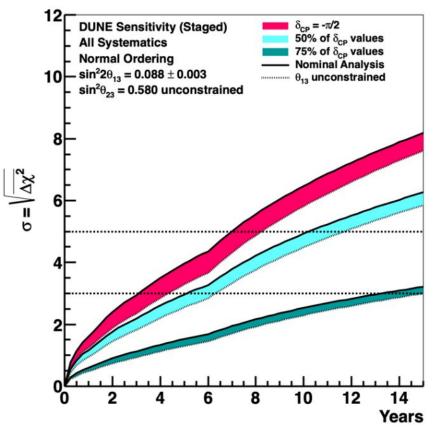
$$n_i^c = N/L^2 \int_{E_i - \Delta E_i/2}^{E_i + \Delta E_i/2} dE' \int_0^{\infty} \phi^c(E) P^c(E) \sigma^c(E) R^c(E, E') \epsilon^c(E').$$


Channel's values in GLoBES

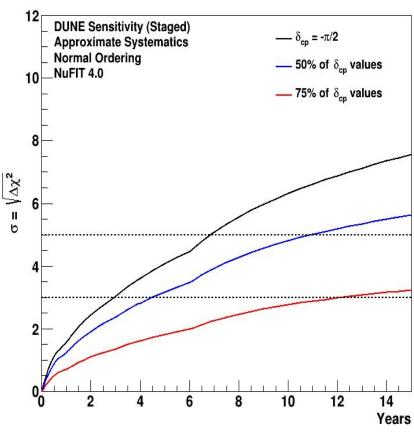


Event rates - TDR reference

- Include all systematics effects
- A full simulation chain

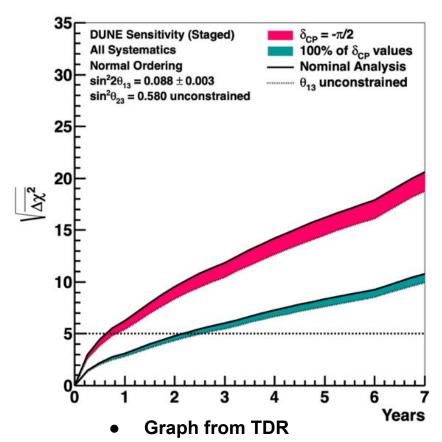


- Graph from our results
- Approximate systematics effects
- Approximate simulation

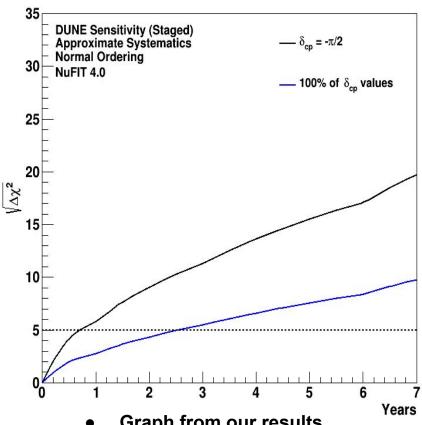


CPV Sensitivity - TDR reference

- Graph from TDR
- Include all systematics effects
- A full simulation chain
- Sensitivity analysis with Framework CAFAna



- Graph from our results
- Approximate systematics effects
- Approximation sensitivity analysis with GLoBES



Mass Ordering Sensitivity - TDR reference

- Include all systematics effects
- A full simulation chain
- Sensitivity analysis with Framework CAFAna

- Graph from our results
- **Approximate systematics effects**
- **Approximation sensitivity analysis** with GLoBES

- In general, the energy resolution function is determined through a complete Monte Carlo simulation of the detector and expressed in terms of a smearing matrices.
- We define the "bin kernel" as

$$K_i^c(E) \equiv \int_{E_i - \Delta E_i/2}^{E_i + \Delta E_i/2} dE' \quad R^c(E, E')$$

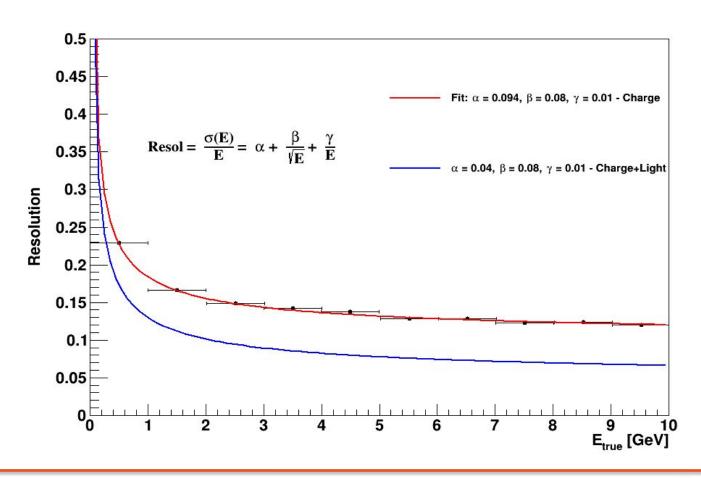
An example for a smearing matrices

\$sampling_points columns

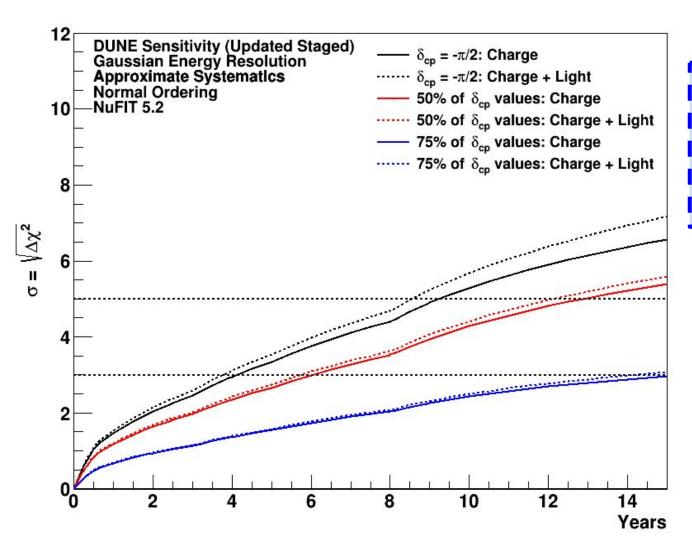
Gaussian energy resolution function and energy resolution:

$$R^{c}(E, E') = \frac{1}{\sigma(E)\sqrt{2\pi}} e^{-\frac{(E-E')^{2}}{2\sigma^{2}(E)}} \qquad \frac{\sigma(E)}{E} = \alpha + \frac{\beta}{\sqrt{E}} + \frac{\gamma}{E}$$

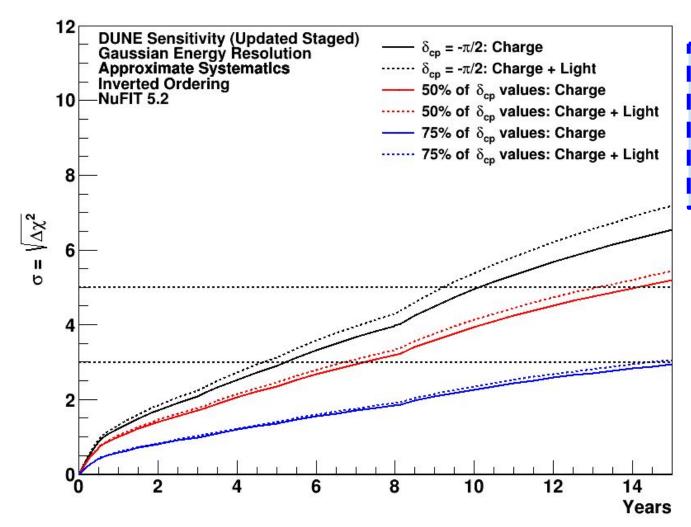
- Flexibility to modify its variables α , β and γ , to achieve the expected energy resolution.



- Charge Energy Resolution (14% energy resolution)
 - Neutrino energy reconstruction in the Vertical Drift (Wenjie Wu) CM 13 Sep, 2022 - > https://indico.fnal.gov/event/53964/contributions/250282/
- Charge + Light energy resolution (8% energy resolution)
 - Charge and Light analysis in DUNE Far Detector HD (Marta Torti and Giulia Brunetti) - CM 25 May, 2023 - > https://indico.fnal.gov/event/57487/contributions/267200/
 - Energy resolution for electron neutrinos is around 6.5%, we assume 8% as an initial conservative analysis.

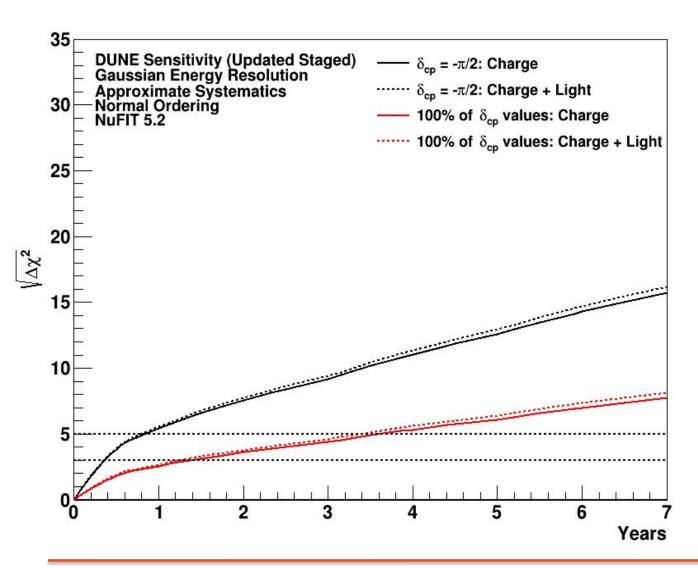

- Fit the MC charge resolution with a proper function;
- Modify one of the parameters to reproduce the expected charge+light resolution.

CPV Sensitivity for Q and Q+L


RESULT!

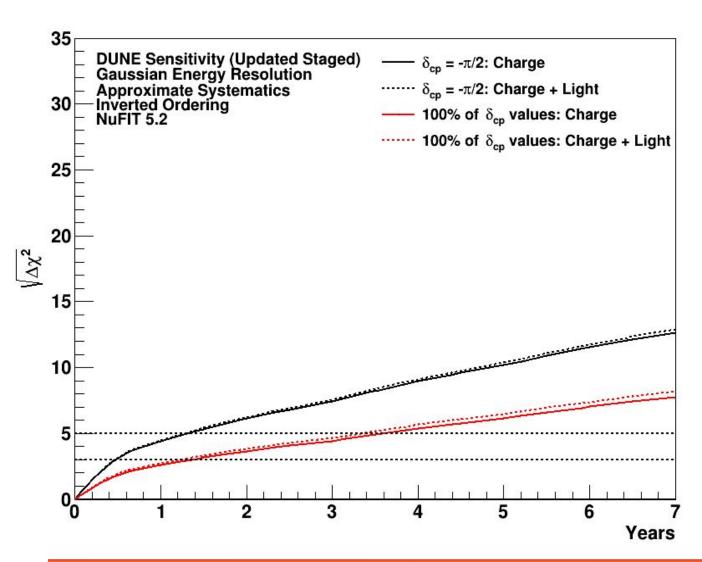
5σ sensitivity can
be reached 6
months earlier!

CPV Sensitivity for Q and Q+L



RESULT!
5σ sensitivity can
be reached 9
months earlier!

Mass Ordering Sensitivity for Q and Q+L



RESULT!
5σ sensitivity can
be reached 3
months earlier!

Mass Ordering Sensitivity for Q and Q+L

RESULT! 5σ sensitivity can be reached 3 months earlier!

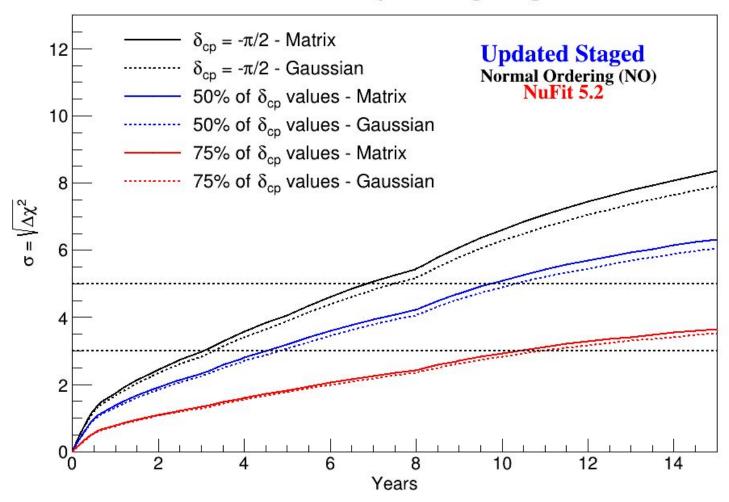
Conclusions

- Impact of including the charge and light signal into GLoBES
 - 6 months less for NO and 9 months for IO for determining CPV.
 - 3 month less for determining Mass Ordering for both NO and IO.
- The simulations does not take into account all the systematic effects, including the ND and Gaussian function lacks details from the detector.
 - These results indicate that including the light signal may improve the sensitivity of CPV and Mass Ordering.

Next steps

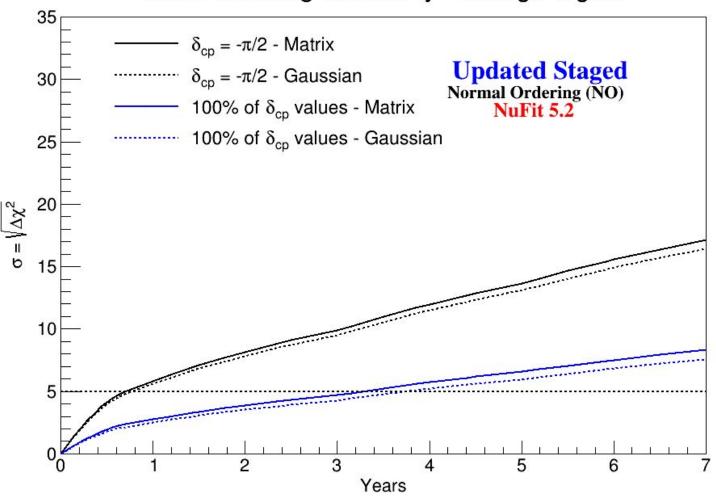
- Dialogue with the LBL group to also include ND and others systematic effects in simulation.
 - Improve the sensitivity analysis using other methods (Mach3, CAFAna?).
- In collaboration with the group of the Charge and Light analysis will employ the Monte Carlo simulation data to construct smearing matrices.

Thank you for attentions!


Sensitivity CPV and Mass Ordering

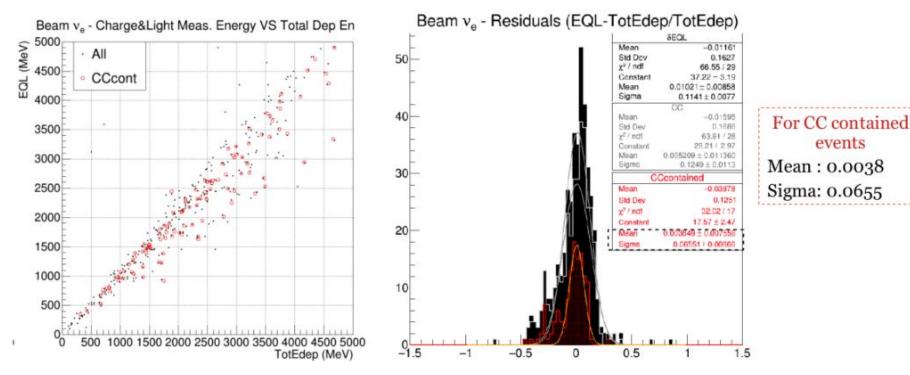
$$\Delta\chi^2_{CPV} = Min[\Delta\chi^2_{CP}(\delta^{test}_{CP} = 0), \Delta\chi^2_{CP}(\delta^{test}_{CP} = \pi)],$$

$$\Delta\chi^2_{ordering} = \chi^2_{opposite} - \chi^2_{true}.$$


CPV Sensitivity - Charge Signal

Mass Ordering Sensitivity - Charge Signal

- Energy Resolution Function
 - Charge signal > Results from Wenjie Wu Presentation.


Resolution	3view_30deg	3view_30deg (anti-nu)	HD (tech-note)
Numu CC events (contained)	20.3%	17.2%	18%
Numu CC events (exiting)	18.3%	17.8%	20%
Nue CC events	14.1%	12.0%	13%

https://indico.fnal.gov/event/53964/contributions/250282/

- Energy Resolution Function
 - Charge and Light signal for electron neutrino > Results from Giulia Brunetti/Marta Torti Presentation.

https://indico.fnal.gov/event/57487/contributions/267200/

