Hidden Photons
in Beam Dump Experiments
and in connection with Dark Matter

Sarah Andreas
DESY

April 26th, 2013

Intensity Frontier Workshop

based on: 1209.6083 and 1109.2869
with M. Goodsell, C. Niebuhr, A. Ringwald
Outline

1 Introduction

2 Electron Beam Dump Experiments
 Production in Bremsstrahlung
 Decay & Detection
 Beam Dump Limits

3 Hidden Dark Matter
 Toy Model
 Supersymmetric Model

4 Conclusions & Outlook
Hidden Sector with Hidden Photon

- **Hidden Sectors** in many BSM scenarios
e.g. string theory, supersymmetry

- simplest scenario: HS with extra U(1)
 - breaking of large gauge groups yield hidden U(1)s
e.g. heterotic or type II strings, supersymmetric models
 - hidden photon γ' with kinetic mixing χ

- most general Lagrangian
 \[\mathcal{L} \supset -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{\chi}{2} X_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{\gamma'}^2 X_{\mu} X^\mu \]
 - χ generated at loop level: $\chi \sim 10^{-3} - 10^{-4}$
 - hidden photon mass $m_{\gamma'} \sim \text{GeV}$

[Holdom '86; Galison, Manohar '84]
Production

- γ' emitted from e^--beam
 in process similar to ordinary Bremsstrahlung

- **production cross section**

Weizäcker-Williams approximation

(replace target particle N by flux of effective photons $\Phi(Z)$)

$$
\frac{d\sigma_{\gamma'}}{dx_e} \approx 0 \overset{m_e \to 0}{\sim} \frac{4 \alpha^3 \chi^2}{m^2_{\gamma'}} \Phi(Z) \sqrt{1 - \frac{m^2_{\gamma'}}{E^2_{\gamma}}} \left(1 + \frac{x^2_e}{3(1 - x_e)}\right)
$$

$$
\sigma \propto \alpha^3 Z^2 \frac{\chi^2}{m^2_{\gamma'}} \approx \mathcal{O}(10 \text{ pb})
$$

compared to e^+e^- collider case:

$$
\sigma \propto \frac{\alpha^2 \chi^2}{E^2} \sim \mathcal{O}(10 \text{ fb})
$$
Decay

- γ' can penetrate the dump
 - carrying most of beam energy
 - emitted in forward direction

- decay into SM particles
 $$\Gamma_{\gamma' \to \ell^+ \ell^-} \approx \frac{\alpha \chi^2}{3} m_{\gamma'}$$

- exponential decay with a decay length
 $$l_{\gamma'} = \gamma' \beta c \tau_{\gamma'} \approx \frac{E_{\gamma'}}{\alpha \chi^2 m^2_{\gamma'}}$$
 $$\approx 10\text{cm} \frac{E_{\gamma'}}{1\text{GeV}} \left(\frac{10^{-4}}{\chi}\right)^2 \left(\frac{10\text{MeV}}{m_{\gamma'}}\right)^2$$
 $$\approx \mathcal{O}(\text{mm} - \text{km})$$
Detection

- decay must take place within decay volume to be observable
- detect decay products, mostly e^+e^-
 no SM background (if shield long enough)
- number of expected events from γ' produced in bremsstrahlung detected via decay products:

$$N_{\text{events}} \sim N_e n_{\text{sh}} \int dE_{\gamma'} \int dE_e \int dl \ L(e_0, E_e, l) \frac{d\sigma_{\gamma'}}{dE_{\gamma'}} e^{-L_{\text{sh}}/l_{\gamma'}} \left(1 - e^{-L_{\text{dec}}/l_{\gamma'}}\right) \text{BR}_{e^+e^-}$$

energy distribution $L(e_0, E_e, l)$ of electrons in dump has to be taken into account
Events in Experiment

- **not all** events can be detected
 - geometry of set-up
 - finite detector size
 - possibly energy cuts

- compare with events from Monte Carlo simulations with MadGraph
 - four-momentum of produced γ'
 - four-momenta of decay leptons
 - angles, track, energies

\Rightarrow experimental acceptance
Shape & Experimental Limitations

γ' has to penetrate $\mathcal{O}(10 \text{ cm})$ dump

number of events for $l_{\gamma'} \ll L_{sh}$:

$$N_{\text{events}} \propto N_e e^{-L_{sh}/l_{\gamma'}}$$

$$l_{\gamma'} \propto E_{\gamma'}/\chi^2 m_{\gamma'}^2$$

enough decays within decay volume

number of events for small χ:

$$N_{\text{events}} \propto N_e \sigma \left(e^{-L_{sh}/l_{\gamma'}} - e^{-L_{tot}/l_{\gamma'}} \right)$$

$$\propto N_e \sigma \frac{L_{\text{dec}}}{l_{\gamma'}} \quad \text{for} \quad l_{\gamma'} \gg L_{sh,\text{dec}}$$

$$\propto N_e \frac{\chi^2}{m_{\gamma'}^2} \chi^2 m_{\gamma'}^2, L_{\text{dec}} \propto N_e \chi^4 L_{\text{dec}}$$

\Rightarrow independent of $m_{\gamma'}$
Shape & Experimental Limitations

- **γ'** has to penetrate \(\mathcal{O}(10 \text{ cm}) \) dump

 number of events for \(l_{\gamma'} \ll L_{\text{sh}} \):

 \[
 N_{\text{events}} \propto N_e e^{-L_{\text{sh}}/l_{\gamma'}}
 \]

 \[
 l_{\gamma'} \propto E_{\gamma'}/\chi^2 m_{\gamma'}^2
 \]

- Enough decays within decay volume

 number of events for small \(\chi \):

 \[
 N_{\text{events}} \propto N_e \sigma \left(e^{-L_{\text{sh}}/l_{\gamma'}} - e^{-L_{\text{tot}}/l_{\gamma'}} \right)
 \]

 \[
 \propto N_e \sigma \frac{L_{\text{dec}}}{l_{\gamma'}} \quad \text{for} \quad l_{\gamma'} \gg L_{\text{sh,dec}}
 \]

 \[
 \propto N_e \frac{\chi^2}{m_{\gamma'}^2} \chi^2 m_{\gamma'} L_{\text{dec}} \propto N_e \chi^4 L_{\text{dec}}
 \]

 \[\Rightarrow \text{ independent of } m_{\gamma'}\]

- Experimental acceptance from Monte Carlo simulations with MadGraph

Sarah Andreas (DESY)
E–Beam Dumps & Dark Matter
Intensity Frontier, 26.04.2013
8 / 21
Shape & Experimental Limitations

\(\gamma' \) has to penetrate \(\mathcal{O}(10 \text{ cm}) \) dump

Number of events for \(l_{\gamma'} \ll L_{sh} \):

\[
N_{\text{events}} \propto N_e e^{-L_{sh}/l_{\gamma'}}
\]

\[
l_{\gamma'} \propto E_{\gamma'}/\chi^2 m_{\gamma'}^2
\]

Enough decays within decay volume

Number of events for small \(\chi \):

\[
N_{\text{events}} \propto N_e \sigma \left(e^{-L_{sh}/l_{\gamma'}} - e^{-L_{tot}/l_{\gamma'}} \right)
\]

\[
\propto N_e \sigma \frac{L_{\text{dec}}}{l_{\gamma'}} \quad \text{for} \quad l_{\gamma'} \gg L_{\text{sh,dec}}
\]

\[
\propto N_e \frac{\chi^2}{m_{\gamma'}^2} \chi^2 m_{\gamma'}^2 L_{\text{dec}} \propto N_e \chi^4 L_{\text{dec}}
\]

\(\Rightarrow \) independent of \(m_{\gamma'} \)

Experimental acceptance from Monte Carlo simulations with MadGraph
Shape & Experimental Limitations

\[\gamma' \] has to penetrate \(\mathcal{O}(10 \text{ cm}) \) dump

Number of events for \(I_{\gamma'} \ll L_{\text{sh}} \):

\[
N_{\text{events}} \propto N_e e^{-L_{\text{sh}}/I_{\gamma'}}
\]

\[I_{\gamma'} \propto E_{\gamma'}/\chi^2 m^2_{\gamma'} \]

Enough decays within decay volume

Number of events for small \(\chi \):

\[
N_{\text{events}} \propto N_e \sigma \left(e^{-L_{\text{sh}}/I_{\gamma'}} - e^{-L_{\text{tot}}/I_{\gamma'}} \right)
\]

\[
\propto N_e \sigma \frac{L_{\text{dec}}}{I_{\gamma'}} \quad \text{for} \quad I_{\gamma'} \gg L_{\text{sh,dec}}
\]

\[
\propto N_e \frac{\chi^2}{m^2_{\gamma'}} \chi^2 m^2_{\gamma'} L_{\text{dec}} \propto N_e \chi^4 L_{\text{dec}}
\]

\[\Rightarrow \text{independent of } m_{\gamma'} \]

Experimental acceptance from Monte Carlo simulations with MadGraph
Shape & Experimental Limitations

\(\gamma' \) has to penetrate \(\mathcal{O}(10 \text{ cm}) \) dump

number of events for \(l_{\gamma'} \ll L_{sh} \):

\[
N_{\text{events}} \propto N_e e^{-L_{sh}/l_{\gamma'}}
\]

\[
l_{\gamma'} \propto E_{\gamma'}/\chi^2 m_{\gamma'}^2
\]

eff

enough decays within decay volume

number of events for small \(\chi \):

\[
N_{\text{events}} \propto N_e \sigma \left(e^{-L_{sh}/l_{\gamma'}} - e^{-L_{\text{tot}}/l_{\gamma'}} \right)
\]

\[
\propto N_e \sigma \frac{L_{\text{dec}}}{l_{\gamma'}} \quad \text{for} \quad l_{\gamma'} \gg L_{sh,\text{dec}}
\]

\[
\propto N_e \frac{\chi^2}{m_{\gamma'}^2} \chi^2 m_{\gamma'}^2 L_{\text{dec}} \propto N_e \chi^4 L_{\text{dec}}
\]

\Rightarrow \text{ independent of } m_{\gamma'}

experimental acceptance
from Monte Carlo simulations with MadGraph
Limits from Experiments

▶ KEK Japan (1986) [Konaka et al. ’86]
 - 27 mC electrons at 2.5 GeV
 - shield: 3.5 cm tungsten target, 2.4 m iron
 - decay volume: 2.2 m

▶ Orsay France (1989) [Davier, Nguyen Ngoc ’89]
 - 3.2 mC electrons at 1.6 GeV
 - shield: 65 cm tungsten target, 1 m lead
 - decay channel: 2 m inside concrete wall

▶ SLAC E141 (1987) [Riordan et al. ’87]
 - 0.32 mC electrons at 9 GeV
 - shield: 12 cm tungsten; decay volume: 35 m

▶ SLAC E137 (1988) [Bjorken et al. ’88]
 - 30 C electrons at 20 GeV
 - shield: alu, 179 m rock; decay volume: 204 m

▶ Fermilab E774 (1991) [Bross et al. ’91]**
 - 0.83 nC electrons at 275 GeV
 - shield: 30 cm tungsten
 - decay volume: 2 m

[SA, Niebuhr, Ringwald]
Limits from Experiments

▶ KEK Japan (1986) [Konaka et al. ’86]
• 27 mC electrons at 2.5 GeV
• shield: 3.5 cm tungsten target, 2.4 m iron
• decay volume: 2.2 m

▶ Orsay France (1989) [Davier, Nguyen Ngoc ’89]
• 3.2 mC electrons at 1.6 GeV
• shield: 65 cm tungsten target, 1 m lead
• decay channel: 2 m inside concrete wall

▶ SLAC E141 (1987) [Riordan et al. ’87]
• 0.32 mC electrons at 9 GeV
• shield: 12 cm tungsten; decay volume: 35 m

▶ SLAC E137 (1988) [Bjorken et al. ’88]
• 30 C electrons at 20 GeV
• shield: alu, 179 m rock; decay volume: 204 m

▶ Fermilab E774 (1991) [Bross et al. ’91]
• 0.83 nC electrons at 275 GeV
• shield: 30 cm tungsten
• decay volume: 2 m

[SA, Niebuhr, Ringwald]
Outline

1. Introduction

2. Electron Beam Dump Experiments

3. Hidden Dark Matter
 - Toy Model
 - Supersymmetric Model

4. Conclusions & Outlook
Toy Model: Dirac fermion DM

Simplest hidden sector with DF & DM

Hidden Photon with mass $m_{\gamma'}$ and mixing χ

Additional Dirac fermion ψ

- one extra mass parameter m_{ψ}

Relic abundance Ωh^2

- annihilation of ψ through and into γ'
- s-channel: resonance for $m_{\gamma'} = 2 m_{\psi}$
- t-channel only when $m_{\gamma'} < m_{\psi}$

$\Rightarrow \psi$ total DM or subdominant component

$\chi = \frac{g_Y g_H}{16 \pi^2} \times \kappa$
Toy Model: Dirac fermion DM

Simplest hidden sector with DF & DM

Hidden Photon with mass $m_{\gamma'}$ and mixing χ

Additional Dirac fermion ψ

- one extra mass parameter m_ψ

Relic abundance Ωh^2

- annihilation of ψ through and into γ'
- s-channel: resonance for $m_{\gamma'} = 2 m_\psi$
- t-channel only when $m_{\gamma'} < m_\psi$

\Rightarrow ψ total DM or subdominant component

$\chi = \frac{\bar{\psi} \gamma_h \psi}{16 \pi^2} \times \kappa$

$[\text{Fayet '04; Pospelov, Ritz, Voloshin '08; Cheung, Ruderman, Wang, Yavin '09; Morrissey, Poland, Zurek '09; Dudas, Mambrini, Pokorski, Romagnoni '09; Chun, Park '10; Essig, Kaplan, Schuster, Toro '10; Mambrini '10; Cline, Frey '12; Hooper, Weiner, Xue '12}]$

$[\text{SA, Goodsell, Ringwald '11}]$
Toy Model: Dirac fermion DM

Direct Detection

- elastic scattering on nuclei
- mediated by γ'
- spin-independent vector-like interaction

\[
\psi \rightarrow \gamma' \rightarrow \psi
\]

Comparison with experiments

- signal claims by DAMA, CoGeNT, CRESST, CDMS
- limits on σ_{SI}: XENON10 & 100, DAMIC

[SA, Goodsell, Ringwald '11]
Supersymmetric Dark Force models

- most simple anomaly-free HS:
 - three chiral superfields S, H^+, H^- charged under $U(1)_h$
 - superpotential: $W \supset \lambda_S \, S H^+ H^-$
 (assume MSSM in visible sector)

- consider gravity mediation [Morrissey, Poland, Zurek '09]
 - gravitino is not the LSP
 - DM can consist of stable hidden sector particle
 is either Majorana or Dirac fermion

- hidden gauge symmetry breaking:
 - radiatively through running
 - induced by visible sector
Radiative breaking

- running of Yukawa coupling λ_S induces breaking
 - choose masses & couplings at high scale
- Majorana fermion Ψ_M: total & subdominant DM
 - axial coupling generates SD scattering
 - minor SI scattering (Higgs Portal $\sim 10^{-46}\text{cm}^{-2}$)

\Rightarrow SD in reach of experiments SI beyond reach
Visible sector induced breaking

- via effective Fayet-Iliopoulos term
 - assume gravitino heavier than HS

- Majorana & Dirac fermion as DM
 - Ψ_M: mostly SD (like rad. breaking)
 - Ψ_D: mostly SI (like Toy-Model, but $m_\Psi < m_{\gamma'}$)

$0.1 \leq \kappa \leq 10$

\Rightarrow SI probe Ψ_D SD probe Ψ_M
Outline

1 Introduction

2 Electron Beam Dump Experiments

3 Hidden Dark Matter

4 Conclusions & Outlook
Conclusions & Outlook

- **electron beam dump experiments**
 - cover lower left corner of the parameter space
 - extending the limits
 - upwards requires short L_{sh} and/or high E_0
 - downwards requires long L_{dec} and/or large N_e
 - which electron beams are available in the future?
 - can they be used parasitically for new bounds?

- **dark matter in hidden sector**
 - viable models with large parameter space
 - SUSY models with gravity mediation also possible
 - what is the preferred parameter space?
 - constraints from indirect detection?