cavity searches for new particles

OK Baker - Yale University Snowmass Intensity Frontier Workshop

physics motivation

allowed parameter space for hidden sector CDM

constraints on kinetic mixing parameter from astrophysics; interesting regions in yellow

M Cicoli, M. Goodsell, J. Jaeckel, A. Ringwald; arXiv:1103.3705 (2011)

constraints on axion and ALP parameter from astrophysics and terrestrial expts

P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, A. Ringwald arXiv:1201.5902, JCAP (2012)

techniques

light shining through walls (LSW): B field

Regions of length L with strong magnetic field B

$$P_{det} \approx \left(\frac{1}{4}(gBL)^2\right)^2$$

Sov. Phys. JETP 56, 502 (1982)

4/25/13

light shining through walls (LSW); no B field

Light shining through walls by γ-γ' mixing (no B_{ext} required):

$$P_{det} = 16\chi^4 \left[\sin\left(\frac{\Delta k L_1}{2}\right) \sin\left(\frac{\Delta k L_2}{2}\right) \right]^2, \quad \Delta k = \omega - \sqrt{\omega^2 - m_{\gamma'}^2}$$

J. Redondo and A. Ringwald, arXiv:1011.3741v1

hidden sector search example

axion search example

kinetic mixing \rightarrow coupling to B field

Yale microwave cavity experiment

٠	O. K. Baker		Yale
•	M. Betz		CERN
•	F. Caspers		CERN
•	J. L. Hirshfield		Yale
•	Y. Jiang		Yale
•	G. Kazakevitch		Muons, Inc
•	S. Kazakov		Yale
•	M. A. LaPointe		Yale
•	A. T. Malagon	(graduate student)	Yale
•	A. J. Martin	(research scientist)	Yale
•	S. Shchelkunov		Yale
•	Penny L. Slocum	(research scientist)	Yale
•	A. Szymkowiak		Yale

microwave receiver - ymce

present experiment at 34 GHz

- Cu signal cavity resonant at 34 GHz, cooled to T=4 K, tunable, TE011 mode.
- second drive cavity at room temperature, coupled to high power 34 GHz magnicon.
- experiment can be a 2-cavity LSW experiment or a 1-cavity galactic halo ALP measurement.
- can use TE-mode (scalar) or TMmode (pseudoscalar) caviities in magnetic field

Yale microwave cavity expt (ymce)

Resonant dip

Gain Measurements

Line loss through calibration port. Defines our knowledge of gain.

Noise temperature measured from output power density

Geometry Factor* for hidden photons in microwave cavity searches

$$G_{HSP} \equiv \omega_0^2 \int_{V'} \int_{V} d^3 \mathbf{x} d^3 \mathbf{y} \frac{exp(ik|\mathbf{x} - \mathbf{y}|)A(\mathbf{y})A'(\mathbf{x})}{4\pi|\mathbf{x} - \mathbf{y}|},$$

Separates geometry information (e.g. cavity fields and their overlap) from the remainder of the calculation.

Snowmass Intensity Frontier - ANL * J. Jaeckel and A. Ringwald, Phys. Lett. B 659 (3) 509, 2008.

measured transmission probability

$$P_{trans} = \chi^4 Q Q' \frac{m_{\gamma'}^8}{\omega_0^8} |G^2|$$

Q (Q'): cavity Quality factor (~10⁴)

- *m*: hidden sector photon mass
- **ω:** photon frequency (34 GHz)
- G: geometry factor

4/25/13

current/near future results

sensitivity to hidden photons

want to make measurements at higher mass (higher frequencies: requires new techniques; improved technologies

ADMX-HF Collaboration

Steve Lamoreaux, Yulia Gurevich (PD), Ben Brubaker (GSR), Sid Cahn

Konrad Lehnert, Mehmet Ali Anil (GSR)

Karl van Bibber, Jaben Root (UGSR)

Gianpaolo Carosi

We gratefully acknowledge support of the National Science Foundation, and the U.S. Department of Energy (GC, Early Career Award)

principle of the experiment (Sikivie, 1983)

$$P_{sig} \propto (B^2 V Q_{cav})(g^2 m_a \rho_a) \qquad s/n = \frac{P_{sig}}{kT_{sys}} \sqrt{\frac{t}{\Delta v}}$$

24

ADMX-HF at Yale

Microwave Cavity

Dilution Refrigerator - ANL Superconducting Magnet 25

ADMX-HF cavity update

- Q = 18,800 before annealing @ 300K
- Q = 27,200 after annealing
- Should be >100,000 @ 4K (without rods)
- Integrate late-April

4/25/13

Snowmass Intensity Frontier - ANL

hidden sector search example: CERN setup

M. Betz, F. Caspers, K. Zioutas (2011)

CERN - current lab setup

M. Betz, F. Caspers, K. Zioutas (2011)

- emitting cavity (A)
- detecting cavity (B) in microwave shielding enclosure (C)
- C provides 100 dB of additional microwave attenuation (measured) and contains a spectrum analyzer
- custom feed-trough filter for 230 V mains (D)
- all signals are transmitted over optical fibres (E)

CERN - current lab setup w/ magnet

cavity (**A**) cavity (**B**) in e shielding (**C**) s 100 dB of I microwave on (measured) ins a analyzer ed-trough 30 V mains

are ed over optical

sensitivity to hidden photons in 2011 (CERN)

- there is also a planned experiment at CERN
 - M. Betz, F. Caspers, A microwave paraphoton and axion detection experiment with 300 dB electromagnetic shielding at 3 GHz, proceedings of IPAC 2012
- additionally 200 MHz cavities from CERN SPS

4/25/13

summary

microwave cavity searches future improvements

- stronger magnetic fields (increased sensitivity)
- superconducting cavities (higher Q)?
- larger cavities (increased sensitivity at lower masses)
- smaller cavities (higher masses)
- improved amplifiers

Frontier - ANL

additional slides

microwave receiver - ymce

"Image frequency" $2f_2-f_1$ will also mix with f_2 to give f_1-f_2 . Suppress it with a filter before the mixer.

4/25/13

noise resolution

• 1 Hz resolution bandwidth

- 1 hour
- integration time
- 2 x 10⁻²³ watts

10 minutes integration time

