GeV-scale Physics in the South Pole Icecap

Baryon Number Violation Workshop Intensity Frontier Argonne National Laboratory 25-27 April, 2013 Doug Cowen

Outline

- •Advantages of South Pole ice
- IceCube and its low-energy extensions
- •Very preliminary ideas for MICA (Megaton-scale Ice Cherenkov Array)
 - possible geometries, photon detectors
 - •very crude time scale and cost estimates
 - proton decay
 - supernova neutrino burst detection

Advantages of South Pole Ice

- Extremely clear medium for Cherenkov light
- No cavities to carve out of rock: big cost savings
- Melting deep holes is well understood technology
- Excellent infrastructure at South Pole

IceCube/DeepCore

- Original IceCube design focused on threshold of E_ν > few 100 GeV
- DeepCore has lower threshold ($E_v > \sim 10$ GeV)
 - in a reduced volume
- Expect $\mathcal{O}(10^5)$ atm. v triggers per year
 - \bullet big increase at low E_ν

IceCube/DeepCore Design

- High module density region at bottom center of IceCube
 - in very clear ice
 - $\lambda_{eff} \sim 50m$
 - $\lambda_{abs} \sim 150 m$
 - surrounding IceCube employed as an active veto against downward-going cosmic ray muons
 - Note: any future detector situated in this region can also use DeepCore as a veto

IceCube/PINGU

- Precision IceCube Next Generation Upgrade (PINGU; to be proposed)
 - in-fill array within DeepCore
 - \bullet reach few-GeV E_{ν} threshold
 - standard IceCube Digital Optical Modules (DOMs) for light collection
 - primary goal
 - measure neutrino mass hierarchy with atmospheric neutrinos
 - secondary goals
 - WIMP searches, neutrino oscillations, earth tomography...
 - tertiary goal
 - pathfinder for new detector technology for MICA

IceCube/PINGU

- Geometries being studied
 - 20 strings, 60 modules @ 5m vertical (see fig.)
 - 20, 100@3
 - 40, 60@5
 - 40, 100@3
- •Timescale
 - 2yr prep., 2(3)yr deployment, start data taking early 2018(2019)

MICA: Megaton-scale Ice Cherenkov Array A Possible MeV-GeV Detector in the Ice

- We present here *plausibility* arguments, not detailed simulation results
 - Construction, Logistics, Schedule:
 - IceCube has demonstrated high-speed hot water drill capable of 20 holes per season & managed challenging South Pole logistics
 - Cost:
 - Detection medium is the support structure
 - Driver is photocathode, not civil engineering
- Fundamental question: How much information can we extract from the ice? Ballpark numbers:
 - For EM showers, expect ~100,000 γ /GeV \rightarrow ~1000 γ /GeV @ 1% coverage
 - Reduced by ~5x due to glass, QE, etc. → ~200p.e./GeV
 - Further reduced by impact of scattering
 - Super-K sees 5p.e./MeV @ 40% (5,000p.e. for $p \rightarrow e\pi^0$, and scattering is less of an issue)
 - (We make no claims about being able to reconstruct events @1% coverage!)

Strawman MICA: Photocathode Coverage

- Run some numbers to set the scale for possible detectors
- Back-of-the-envelope sub-sub-optimal <u>strawman</u> using existing technology, IceCube-like effort (~5 yrs deployment) & expense (~\$200M, exclusive of personnel):
 - 60 strings each with 120 IceCube 10'' PMT DOMs
 - 3 m vertical DOM spacing: 360 m long strings
 - 5 m horizontal string spacing
 - r = 50 m cylindrical geometry
 - N.B.: no top or bottom caps
 - surrounds ~3 MTon of ice
- Gives ~0.3% photocathode coverage (Aphotocathode/Acylinder)

Strawman MICA: Photocathode Coverage

- "Anything worth doing is worth overdoing."
- Could reach ~10% coverage over 1Mt with
 - 140 strings
 - 6.8m horizontal spacing
 - r(array) = 40m, h(array) = 221m
 - ~7 year deployment timescale
 - 130 modules per string
 - basically a continuous line of photodetectors
 - 60 3" PMTs per module (\$330/PMT)
 - I MegaPMT
- Cost: ~\$500M
 - strongly dominated by cost of photocathode

MICA Photon Detectors

- Back to the real world...sort of...
- Co-deploy few R&D modules with PINGU
 - composite multi-PMT DOMs
 - see next slides
 - wavelength shifter optical modules (WOMs)
 - see next slides
 - hybrid PMTs?
 - standard Hamamatsu PMT with silicon replacing dynode structure
 - substantial cost savings, but is performance adequate?
 - LAPPDs? (LANPDs???)
 - Large Area Pico(Nano*)second Photon Detectors
 - Consortium headquartered at Argonne
- Ideally, want a continuous line of detectors in each drilled hole
- New, cheaper photon detectors would be a game-changer

*MICA would be happy with ns resolutions

Composite DOM

- Cylinder with ~60 3'' PMTs and electronics; single connector
 - Effective photocathode area >6x that of a IO'' PMT
 - Diameter comparable to IceCube DOM so drilling requirement would be similar
 - Design study underway (NIKHEF and Erlangen)

Existing KM3NeT Design

Prototype cylinder

Wavelength-shifter Optical Module

- WOM
 - large collection area
 - low noise rate (few Hz)
 - big advantage for SNe
 - better UV sensitivity
 - cost effective
 - but: somewhat slower response time
- Prototype under development at U.
 Bonn

*Includes glass transmission, ang. acceptance, and PMT eff.; λ >300nm

Baryon Number Violation Workshop/Intensity Frontier/Argonne/April 2013

Continuous Line Detectors for MICA

- Composite DOMs might be rather pricey
- WOMs alone have nice price point but timing resolution may be inadequate (for proton decay)
 - needs simulation studies
- Combine the two as a hybrid detector?

	ð	Ŭ	Ŏ		Ŏ	

Continuous Line Detectors for MICA

- Composite DOMs might be rather pricey
- WOMs alone have nice price point but timing resolution may be inadequate (for proton decay)
 - needs simulation studies
- Combine the two as a hybrid detector?

	Ş	8	Ø	Ó		Ó	8 8 9	é

Continuous Line Detectors for MICA

- Composite DOMs might be rather pricey
- WOMs alone have nice price point but timing resolution may be inadequate (for proton decay)
 - needs simulation studies
- Combine the two as a hybrid detector?
 - timing from composite DOM
 - calorimetric energy measurement from WOM

MICA Physics

- Proton Decay
 - Need to move to the Mton scale to reach $\tau_p \sim 10^{35-36}$ yr
- Simulation work has only scratched the surface
 - IceCube's low energy contingent is focused on PINGU now
 - Interested parties are welcome to contribute to MICA simulation studies!
 - With IceCube "Associate Membership," gain access to all our software and you'll produce interesting results in no time!

MICA' Physics

- Supernova neutrino burst detection
 - Current detectors sensitive to galactic SNe (I-2 per century)
 - To reach > I SNe/yr need
 - ~5 Mton fiducial volume
 - Bigger than what we described earlier
 - ~10 MeV threshold
 - To beat down noise from <u>solar</u> & atm. v, Michel e⁻, intrinsic PMT, require:
 - >= 5 hits per event
 - >= 3 events in 10 seconds
 - ~30° directional resolution (reject solar ν)

20

2

MICA' Physics

Rough idea of 10 MTon detector layout

observed SNe / year

Model	N _v ≥ 3	N _v ≥ 10			
LL	2.34	0.55			
ТВР	1.13	0.26	*Dark SN rate		
Dark SNe*	2.03	0.34	assumed to be 10% of total		
Sum**	1.5 - 8.6	0.6 - 1.8			

** cosmic SFR (Star Formation Rate) 2x cosmic SNR (Supernova Rate)

=

d[Mpc]

Conclusions

- A megaton-scale detector can be constructed in the ice at very competitive cost
 - a significantly cheaper alternative to the venerable PMT would be a real game-changer
 - for a technology at, say, 1/3 the cost of PMTs, get 1MTon for ~\$250M
- Physics goals of proton decay and SNe neutrino burst detection may be attainable (but perhaps not simultaneously?)
- Much more simulation is needed to address questions such as
 - best geometry (volumetric? cylindrical? hex-cell?)
 - required photocathode coverage
 - requirements for module performance

The End

The Neutrino Detector Landscape

* boxes denote primary detector physics energy regimes and are not absolute limits

MICA: Supernovae

- SN neutrinos at 10-20 MeV would produce 2000-4000 Cherenkov photons:
 - Even few percent photocathode coverage enough to see a single SN neutrino
 - A burst of >=3 neutrinos in 1-10s would be above atmospheric neutrino background
 - Have not yet looked at spallation daughters
 - A ~5 MTon detector could see to ~10Mpc
 - Roughly annual supernova neutrino detection!
 - Other benefits:
 - Early triggers for optical telescopes
 - ...and gravitational wave detectors: bkgd. reduction $\sim\!10^6$; signal enhancement $\sim\!1000 x$
 - Caveats: LOTS of uncertainties (reconstruction, particle ID, spallation rejection...)

MICA: Proton Decay

- Very challenging. To beat backgrounds from atmospheric neutrinos and muon spallation products one needs:
 - energy (momentum) resolution
 - particle ID via Cherenkov ring reconstruction
 - high photocathode area
- Simulations in infancy

Muon Flux vs. Overburden

 Active veto translates to greater effective depth

Supernova Detection Probability

