Collider Signatures of Neutrino Models¹ Snowmass Intensity Frontier Workshop, ANL

Richard Ruiz

Pitt-PACC, University of Pittsburgh

April 26, 2013

¹Silent Plug: Snowmass Young: http://tinyurl.com/snomassyoung

What This Talk Is.

It is a gross, unjust summary of heavy neutrino searches at colliders.

It focuses on two complimentary perspectives:

- Low Energy Colliders: B, D, τ Factories
- ► High Energy Colliders: The ILC, LHC, and beyond.

The Higgs will make an appearance

... but first, a very brief review at how neutrino masses can be small and large

The Seesaw Mechanism² in a Nutshell

Massive, left-handed neutrinos exist. By Lorentz-invariance, ν_R exist too! Hence, below the EW scale

 $\mathcal{L} \ni -m_D \overline{\nu_R} \nu_L + h.c.$

Suppose some spin-1/2 fermion with zero charge under any exact symmetry below EW scale (singlet!). We are allowed to write

 $-m_M \overline{S^c}S$

However, below the EW scale, ν and S have the same spacetime and good, internal q numbers, so they mix! The mass eigenvalues are

$$m_1 \approx m_D \frac{m_D}{m_M}, \quad m_2 \approx m_M \qquad (m_D \ll m_M)$$

Several Ways to Generate $m_{D/M}$

Type(I)³: Add a spin-1/2 singlet with a Majorana mass term:

$$\blacktriangleright \mathcal{L} \ni m_M \overline{S^c} S \implies m_{\nu}^{ij} \propto m_D^i m_D^j / m_M$$

N_R can be singlet

Type(II)⁴: Add Higgs $SU(2)_L$ triplet $(H^{0,\pm,\pm\pm})$

• $\mathcal{L} \ni y\overline{L^{c}}(i\sigma_{2})\Phi L \implies m_{M}\overline{\nu^{c}}\nu \implies$ same as above

Type(III)⁵: Introduce fermion $SU(2)_L$ triplet $(T^{0,\pm})$

•
$$m_{
u}^{ij} \propto m_D^i m_D^j / M_T$$

Lepton number violation (LNV) is present in all these mechanisms.

Punchline: There are many different ways to generate $m_{D/M}$, and each results in rich collider phenomenology.

³Minkowski ('77); Gell-Mann, Ramond, Slansky ('79); etc...

⁴Mohapatra, Senjanovic ('80,'81); Magg, Wetterich ('80); Lazarides, Shafi ('81); etc...

⁵Foot, Lew, He, Joshi (1989); G. Senjanovic et al. 🗤 🖅 🖉 🖉 🖉 👘 📳 🖉 🧟

A Quick Note for Experiments

If there are 3 ν_L with light mass eigenstates, *m*, and *n* ν_R with heavy mass eigenstates, *m'*, then the mixing gets complicated⁶

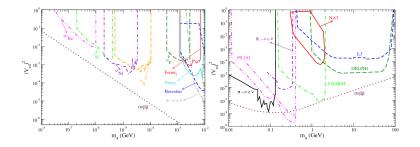
$$\begin{pmatrix} \nu_L \\ N_L^c \end{pmatrix} = \begin{pmatrix} U_{3\times3} & V_{3\times n} \\ X_{n\times3} & Y_{n\times n} \end{pmatrix} \begin{pmatrix} \nu_m \\ \nu_{m'} \end{pmatrix}$$

- ► U_{3×3} is the PMNS matrix
- ▶ $UU^{\dagger}, YY^{\dagger} \sim \mathcal{O}(1)$ and $VV^{\dagger}, XX^{\dagger} \sim \mathcal{O}(m_m/m_{m'}) \sim \mathcal{O}(10^{-3})^7$
- New CP phases and mixing angles will be present
- A job for high intensity experiments

 $^{6}\mbox{Atre, Han, Pascoli, Zhang, arXiv.0901.3589; Han, Lewis, Ruiz, Si, arXiv:1211.6447$

⁷W.-Y. Keung and G. Senjanovic, Phys. Rev. Lett. 50, 1427 (1983). Solution (1983).

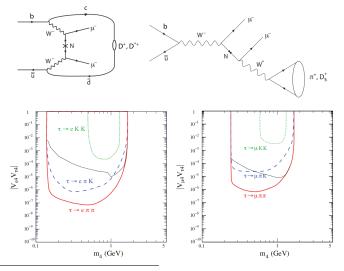
Heavy Neutrinos at Low Energy Colliders:


Mesons Factories

Heavy Neutrinos at Meson Factories

 $0
u\beta\beta$ decay greatly restricts⁸ $\sum_{m'} \frac{|V_{em'}|^2}{m_{m'}}$,

- GeV-scale N is very much still possible if $|V_{\ell m'}|$ is small
- In this case, more energy buys little; luminosity is needed

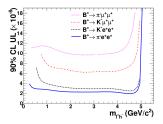


⁸Olness, Ebel (1984); Langacker, Sankar (1989); Belanger, et al, arXiv:hep-ph/9508317; London, arXiv:hep-ph/9907419; Benes, et al., arXiv:hep-ph/0501295; Atre, et al., arXiv:0901.3589

3-Body τ /Meson Decays

Majorana N contribute to τ/meson decays through s/t-channels⁹

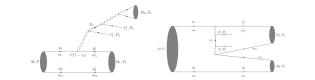
• Sensitive to products of $V_{\ell m'}$ and compliments $0\nu\beta\beta$

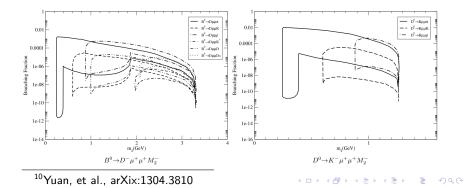

⁹Atre, Han, Pascoli, Zhang, arXiv:0901.3589

3-Body Meson Search Results

Belle: $7.7 \times 10^8 \ B\overline{B}$ pairs at $\Upsilon(4S)$ (arXiv:1107.0642)

Mode	ϵ [%]	$N_{\rm obs}$	$N_{\rm exp}^{\rm bkg}$	U.L. $[10^{-6}]$
$B^+ \to D^- e^+ e^+$	1.2	0	$0.18{\pm}0.13$	< 2.6
$B^+ \to D^- e^+ \mu^+$	1.3	0	$0.83{\pm}0.29$	< 1.8
$B^+ \to D^- \mu^+ \mu^+$	1.9	0	$1.44{\pm}0.43$	< 1.0

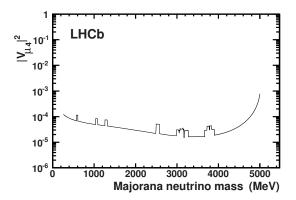

Belle II Goal: 50 ab⁻¹ (×40 higher int. lumi.!) BABAR: $4.7 \times 10^8 \frac{BB}{B}$ (arXiv:1202.3650): Limit on BR vs m_N



Mode	Events	Fit Bias	Yield	η (%) 3	$S(\sigma)$	$\mathcal{B}~(\times 10^{-8})~\mathcal{B}_U$	$L_L (\times 10^{-8})$
$B^+ \to \pi^- e^+ e^+$	123	$+0.15\pm0.09$	$0.6^{+2.5}_{-2.7}$	47.8 ± 0.1	0.4	$0.27^{+1.1}_{-1.2} \pm 0.1$	2.3
$B^+ \to K^- e^+ e^+$	42	-0.30 ± 0.15	$0.7^{+1.8}_{-1.2}$	30.9 ± 0.1	0.5	$0.49^{+1.3}_{-0.8} \pm 0.1$	3.0
$B^+ \rightarrow \pi^- \mu^+ \mu^+$	228	-0.01 ± 0.05	$0.0^{+3.2}_{-2.0}$	13.1 ± 0.1	0.0	$0.03^{+5.1}_{-3.2} \pm 0.6$	10.7
$B^+ \to K^- \mu^+ \mu^+$	209	$+0.02\pm0.04$	$0.5^{+3.5}_{-2.5}$	23.0 ± 0.1	0.2	$0.45^{+3.2}_{-2.7} \pm 0.4$	6.7 🔳

4-Body Meson Decays: $M_1 \rightarrow M_2 \ \ell_1^{\pm} \ \ell_2^{\pm} \ M_3$

Plenty to do: **75** four-body LNV processes with rates comparable to three-body decays, most were previously unconsidered¹⁰

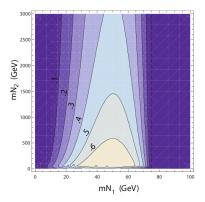


4-Body Meson Search Results

LHCb is now searching for four-body LNV processes but collects only a fraction of luminosity compared to other LHC expts $^{\rm 11}$

$${\cal B}({\it B}^- o {\it D}^0 \pi^+ \mu^- \mu^-) < 1.5 imes 10^{-6}$$
 at 95% CL

Heavy Neutrinos at the ILC:


A Higgs Factory as a Portal to Heavy Neutrinos

・ロト・日本・ヨト・ヨー うへの

Enhanced (In)Visible Higgs Width at ILC

In the most general case, fourth generation neutrinos may have both a Dirac and a Majorana mass terms

- $BR(H \rightarrow N_1 N_1) \propto |V_{N_1 \ell_4}|^2$ can be quite large!¹²
- ▶ N_1 is "light" state; N_2 is heavy state; $m_H = 150$ GeV.

¹²Carpenter, Whiteson, arXiv:1107.2123

Enhanced (In)Visible Higgs Width at ILC

 $\textit{BR}(\textit{H} \rightarrow \textit{N}_1\textit{N}_1) \propto |\textit{V}_{\textit{N}_1\ell_4}|^2$ can be quite large!¹³

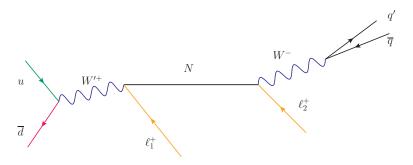
If $BR(N_1 \rightarrow W^+ \ell_{1..3}^-) \propto |V_{N_1 \ell_{1..3}}|^2$ is not too small, $\blacktriangleright H \rightarrow N_1 N_1 \rightarrow W^+ \ell_{1..3}^- W^+ \ell_{1..3}'^-$ is a viable ILC/LHC channel

- If $|V_{N_1\ell_{1..3}}|^2$ is too small,
 - ► $H \rightarrow N_1 N_1$ contributes to the invisible Higgs decay modes, which is a prerogative of ILC.

High luminosity is absolutely necessary for this.

¹³Carpenter, Whiteson, arXiv:1107.2123

Heavy Neutrinos at High Energy Colliders:

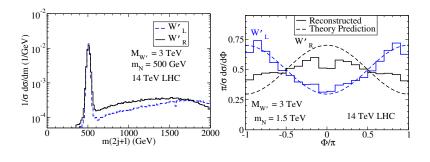

Taking a Crack at the Seesaw Itself

◆□ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < </p>

Resonant Majorana N Production at the LHC

Resonant production of N through $pp \rightarrow N\ell_1^{\pm} \rightarrow \ell_1^{\pm}\ell_2^{\pm}jj$ is

- Clean, direct, and unambiguous¹⁴
- The Holy Grail of LNV at the LHC
- ▶ No missing E_T, m_{jj} = M_W, prominent signal over small background¹⁵

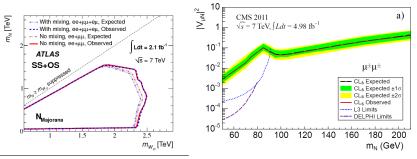


¹⁴Keung, Senjanovic (1983); Dicus et al. (1991); A. Datta, M. Guchait, A.
 Pilaftsis (1993); F. Almeida et al. (2000); F. del Aguila et al. (2007)
 ¹⁵Atre, Han, Pascoli, Zhang, arXiv.0901.3589

Resonant Majorana N Production at the LHC

Resonant production of N through $pp \rightarrow N\ell_1^{\pm} \rightarrow \ell_1^{\pm}\ell_2^{\pm} j j$ is¹⁶

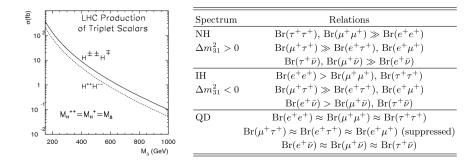
- Fully reconstructible; m_N peak is observable
- Generalized to discriminate between different production modes, e.g. W_{R/L} → Nℓ vs W → Nℓ
- Majorana nature of N can be verified by two methods: LNV and by angular distributions


¹⁶Han, Lewis, Ruiz, Si, arXiv:1211.6447

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

$pp \rightarrow \ell_1^{\pm} \ell_2^{\pm} j j$ Searches at ATLAS and CMS

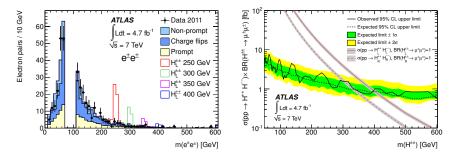
Searches at the LHC are complimentary¹⁷


- Same-sign and Opposite-sign leptons signals are investigated
- ATLAS & CMS search for N coupling to W_R only
 - $m_N > 1.9 \text{ TeV} (M_{W_R} \approx 2.4 \text{ TeV})$
 - $M_{W_R} > 2.5 \text{ TeV} (m_N \approx 0.8 \text{ TeV})$
 - CMS has comparable numbers
- CMS also searches for N coupling to W_L only

Testing Type(II) Seesaw: $H^{\pm\pm}$ Production

 $H^{\pm\pm}$ production is a robust test of Type(II)¹⁸

- $pp \rightarrow W^{\pm *} \rightarrow H^{\pm \pm} H^{\mp}$ has sizable production rate
- $H^{\pm\pm}$ decay modes are sensitive to neutrino hierarchy



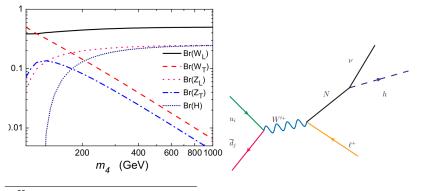
¹⁸Fileviez-Perez, Han, Huang, Li, Wang, arXiv:0803.3450(♂→ < ≧→ < ≧→ < ≧→ ○ < ♡

$H^{\pm\pm}$ Searches at the LHC

The ATLAS and CMS Experiments are actively searching for resonant production of $H^{\pm\pm19}$

- ▶ $pp \rightarrow W^{\pm}W^{\pm} \rightarrow \ell_1^{\pm}\ell_2^{\pm}\nu\nu$ has very few background processes
- Detector behavior, e.g., charge flip/misidentification, is critical
- ▶ $m_{H^{\pm\pm}} \lesssim 400$ GeV is excluded for all $e^{\pm}\mu^{\pm}$ permutations
- CMS has searched for $pp \rightarrow H^{++}H^{--}/H^{++}H^{-} \rightarrow 4/3\ell$

Anything else? Yes.


LHC Neutrino Physics with a 126 GeV Higgs²¹

A $126\ {\rm GeV}\ {\rm Higgs}\ {\rm boson}\ {\rm is}\ {\rm interesting}$

• If N is heavier than H, then the decay to H will be present²⁰

$$\Gamma(\mathbf{N} \to \nu_{\ell} \mathbf{H}) = \frac{g^2}{64\pi M_W^2} |V_{\ell N}|^2 m_N^3 (1 - (m_H/m_N)^2)^2$$

▶ $pp \rightarrow \ell N \rightarrow \ell \nu H$ has well studied backgrounds (*WH*)

²⁰Atre, Han, Pascoli, Zhang, arXiv.0901.3589
 ²¹Han, Ruiz, In Progress

Summary

- 1. Solutions to the "Smallness Problem" invoke lepton number violation
- 2. Meson Factories: Super high lumi. factories can push beyond $0\nu\beta\beta$ limits on $\mathcal{O}(1)$ GeV neutrinos
- 3. ILC: $\mathcal{O}(10)$ GeV neutrinos may contribute to Higgs (in)visible decay modes and can be observed at Higgs factories
- 4. LHC: $\mathcal{O}(10^2 \sim 10^3)~{\rm GeV}$ neutrinos can be unambiguously identified

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion & Beyond²²

The search for heavy Dirac/Majorana neutrinos is a very active and very healthy program at colliders

 L/HE colliders are incredibly complimentary to each other, and to dedicated neutrino experiments, providing

- Independent measurements of neutrino mixing parameters
- Direct measurements of heavy mass eigenstates
- Literally, $\mathcal{O}(100)$ of channels sensitive to LNV

Beyond: Much work has been done at the intersection of the Energy and Intensity Frontiers, and much more work will be done as we continue to push **forward** on higher **luminosity**, higher **energy**, and higher **computing**.

 $^{^{22}}Silent$ Plug: Snowmass Young: http://tinyurl.com/snomassyoung (m) m) s