Searches for Hidden Sector Photons at Mainz

Recent Developments in Theory and Experiment

Theory: TB, Merkel, Vanderhaeghen, arXiv: 1303.2540

Tobias Beranek

¹Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Deutschland

Intensity Frontier Workshop 2013 , Argonne, 25.04. - 27.04.2013

The γ' Parameter Plane for Visible Decays

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

γ' Production from $ep ightarrow ep e^+e^-$

γ' Production from $ep ightarrow ep e^+e^-$

γ' Production from $ep ightarrow ep e^+e^-$

 $\Gamma_{\gamma'}$ decay width of $\gamma' : \mathcal{O}(eV)$, if only SM decay allowed Signal: γ' will appear as sharp resonance from timelike production

> JGU JOHANNES GUTENBERG UNIVERSITÄT MAIN

QED background: Direct diagrams (D)

+ exchange diagrams (X): $e^{-}(k') \leftrightarrow e^{-}(l_{-})$: Contribution is large when signal is large

Exclusion Limit Calculation

- Approximation of cross section ratio $\frac{\sigma_{\gamma'}}{\sigma_{\gamma}^{TL}} = \frac{3\pi}{2N} \frac{e^2}{\alpha} \frac{m_{\gamma'}}{\delta m}$ (Bjorken, Essig, Schuster, Toro, PRD 80)
- Experimental Quantity: $\sigma_{\gamma'+\gamma} \propto \left|\mathcal{M}_{\gamma} + \mathcal{M}_{\gamma'}\right|^2$
 - \Rightarrow Decompositon: $\sigma_{\gamma'+\gamma} = \sigma_{\gamma} + \sigma_{\gamma'} + \sigma_{int}$

- \Rightarrow How well do we know σ_{γ} ?
- \rightarrow approximation of hadronic current, radiative corrections...

QED Background: Double Virtual Compton Scattering

Double virtual Compton scattering amplitude:

- Heavy nucleus target: negligible (large target mass); in the approximation used: low computing effort
- **Proton**: can be **notable** contribution, cross checked with VCS data

Double VCS contribution is included

Technical Challenges

Experiments have finite acceptances

$$\Rightarrow$$
 Evaluate $\Delta \sigma = \int \frac{d\sigma}{d|\vec{l_+}| d\Omega_+ d\Omega_- d\Omega_{e'} d{q'}^2}$ within the exp. limits

Problem: 8-fold numerical integration and integrand contains several strongly peaked structures

Key Question:

Try to do calculation as "exact" as possible or apply approximations? \rightarrow "exact"

Technical Challenges

Experiments have finite acceptances

$$\Rightarrow$$
 Evaluate $\Delta \sigma = \int \frac{d\sigma}{d|\vec{l_+}| d\Omega_+ d\Omega_- d\Omega_{e'} dq'^2}$ within the exp. limits

Problem: 8-fold numerical integration and integrand contains several strongly peaked structures

Key Question:

Try to do calculation as "exact" as possible or apply approximations? \rightarrow "exact"

Run calculations on <u>General Purpose Graphics Processing Units</u> (GPGPU)

(nvidia Tesla)

The MAinz MIcroctron (MAMI)

JOHANNES GUTENBERG

A1: Spectrometer setup at MAMI

Spectrometer A:		
α p ΔΩ Δp/p	> <	20° 735 <u>MeV</u> 28 msr 20%
Spectrometer B:		
α	>	8 °
р	<	870 $\frac{\text{MeV}}{c}$
ΔΩ	=	5.6 msr
$\Delta p/p$	=	15%
Spectrometer C:		
α	>	55°
р	<	$655 \frac{\text{MeV}}{c}$
ΔΩ	=	28 msr
$\Delta p/p$	=	25%
$\delta p/p < 10^{-4}$		

MAMI 2010 (I)

MAMI test run 2010 (Merkel et al. (A1), PRL106)

- Data and theory in good agreement
- Radiative corrections are crucial to describe the data accurately

MAMI 2010 (I)

MAMI test run 2010 (Merkel et al. (A1), PRL106)

- Data and theory in good agreement
- Radiative corrections are crucial to describe the data accurately
- Large contribution from exchange term

MAMI 2010 (II)

• $\Delta \sigma_{\gamma}^D / \Delta \sigma_{\gamma}^{\mathsf{TL}} \simeq 5 - 15$

MAMI 2010 (II)

- $\Delta \sigma_{\gamma}^{D} / \Delta \sigma_{\gamma}^{\mathsf{TL}} \simeq 5 15$
- $\Delta \sigma_{\gamma}^{D+X} / \Delta \sigma_{\gamma}^{\mathsf{TL}} \simeq 15 25$
- exchange contribution increases Δσ_γ/Δσ_γ^{TL} by ≃ factor 2 - 3

MAMI 2012 (I)

Invariant mass distributions for kinematics centered around $m_{e^+e^-} = 57 - 218 \,\mathrm{MeV}$

MAMI 2012 (II)

•
$$\Delta \sigma_{\gamma} / \Delta \sigma_{\gamma}^{\mathsf{TL}} \simeq 10 - 15$$

MAMI 2012 (II)

- $\Delta \sigma_{\gamma} / \Delta \sigma_{\gamma}^{\mathsf{TL}} \simeq 10 15$
- Assumed luminosity of $\sim 10 \, \text{fb}^{-1}$ per setting
- A1 will cover a large region of the (g 2)_µ welcome band

MAMI 201X

Future Plans at MAMI

- New run covering the 2012 kinematics: will be done in 2013
- Displaced Vertex Search: underway, Ph.D. project started
- Plan: Install septum magnets to reach lower masses with A1

γ' Search at MESA: Feasibility Study (I)

acceptances: momentum: 5% horizontal angle: 50 mrad vertical angle: 50 mrad

- Use two small spectrometers
- Beam energies: 80, 120, 160 MeV
- Scattering angle: 10° and for higher masses 20°
- Xenon or Hydrogen as target

γ' Search at MESA: Feasibility Study (II)

γ' Search at MESA: Feasibility Study (III)

•
$$\Delta \sigma_{\gamma} / \Delta \sigma_{\gamma}^{\mathsf{TL}}$$
 between 8 - 10

γ' Search at MESA: Feasibility Study (III)

- $\Delta \sigma_{\gamma} / \Delta \sigma_{\gamma}^{\mathsf{TL}}$ between 8 10
- Suggestion: Xe target and 3 month of beam time

γ' Search at MESA: Feasibility Study (III)

• $\Delta \sigma_{\gamma} / \Delta \sigma_{\gamma}^{\mathsf{TL}}$ between 8 - 10

- Suggestion: Xe target and 3 month of beam time
- MESA covers low m_{γ'} region of the (g 2)_μ welcome band

Conclusions & Outlook

Conclusions:

Theory

Study of the underlying processes to high accuracy

Comparison with data: good agreement Predictions for MAMI and MESA

Experiment

New A1@MAMI measurement underway Construction of MESA approved

Conclusions & Outlook

Conclusions:

Theory

Study of the underlying processes to high accuracy

Comparison with data: good agreement Predictions for MAMI and MESA

Experiment

New A1@MAMI measurement underway Construction of MESA approved

Outlook:

Theory

Application of calculations to other experiments (APEX, HPS, DarkLight) Study of other channels, e.g. rare Kaon decays (TB, Vanderhaeghen, PRD87)

Experiment

Displaced vertex search program started Go to lower masses with A1 Measurement at MESA

