ORKA at Fermilab: Seeking New Physics with Measurements of the "Golden Kaon" Decay $K^+ \rightarrow \pi^+ v \overline{v}$

Douglas Bryman University of British Columbia

April 25, 2013 Argonne Intensity Frontier Workshop

Precision Flavor Physics in the LHC Era

A small set of crucial rare particle decays extremely sensitive to new physics at high mass scales

Q(L) Flavor	Processes to Study NP
1(2)	μ -e Conversion, $\mu \rightarrow e\gamma, \mu \rightarrow eee$
	$\pi(K)^{\scriptscriptstyle +} \to e^{\scriptscriptstyle +} \nu$
2	$K^+ \rightarrow \pi^+ \nu \overline{\nu}, \ K^0_L \rightarrow \pi^0 \nu \overline{\nu}$
3(3)	$b \rightarrow s\gamma, B \rightarrow \mu\mu, \tau \rightarrow \mu\gamma$

Discoveries of new physics at the LHC and elsewhere will require a range of precision flavor physics experiments to home in on the new interpretation.

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ in the Standard Model

The $K \rightarrow \pi v \overline{v}$ decays are the most precisely predicted FCNC decays.

30% deviation from the SM would be a 5 σ signal of NP

 $B_{SM}(K_I^0 \to \pi^0 \nu \overline{\nu}) = (2.43 \pm 0.39) \times 10^{-11}$

$K \rightarrow \pi \nu \overline{\nu}$: High Sensitivity to New Physics

High mass scale effects, Warped Extra Dimensions as a Theory of Flavor, Z', ...??

 $B(K_L^0 \to \pi^0 \nu \overline{\nu}) \text{ vs. } B(K^+ \to \pi^+ \nu \overline{\nu})$

D. M. Straub, arXiv:1012.3893

Buras, De Fazio, Girrbach arXiv:1211.1896

"Kamenik and Smith (2012) "FCNC portals to the dark sector"

Dark Sector Decays $K / B \rightarrow \pi^+ XX$ compete with SM Decays $K / B \rightarrow \pi v \overline{v}$

Operator Dimensional Analysis

$$\frac{m_{I}^{n-6}}{\Lambda^{n-4}} \approx \frac{g^{2}}{M_{W}^{2}} \frac{g^{2}}{16\pi^{2}} |V_{tI}V_{tJ}|$$

K *decays Highly sensitive for low* dimension operators

	n = 5	n = 6	n = 7	n = 8	n = 9
$s \to d$	$3.3\cdot 10^7{\rm TeV}$	$130{\rm TeV}$	$2.0\mathrm{TeV}$	$0.25{ m TeV}$	$0.07{\rm TeV}$
$b \rightarrow d$	$1.3\cdot 10^5{\rm TeV}$	$26~{\rm TeV}$	$1.5{ m TeV}$	$0.37{ m TeV}$	$0.16{ m TeV}$
$b \rightarrow s$	$2.7\cdot 10^4{\rm TeV}$	$12 \mathrm{TeV}$	$0.9{ m TeV}$	$0.25{\rm TeV}$	$0.11{ m TeV}$

link.springer.com/content/pdf/10.1007/JHEP03(2012)090

- Determine everything possible about the K and $\boldsymbol{\pi}$
 - π^+/μ^+ particle ID better than 10⁶ ($\pi^+ \rightarrow \mu^+ \rightarrow e^+$)
 - Work in the CM system (stopped K⁺)
- Eliminate events with extra charged particles or *photons*
 - * π^0 inefficiency < 10⁻⁶
- Suppress backgrounds well below the expected signal (S/N~10)
 - * Predict backgrounds *from data*: dual independent cuts
 - * Use "Blind analysis" techniques
 - * Test predictions with outside-the-signal-region measurements
- Evaluate candidate events with S/N function

Scintillating fiber tgt. π^+ Momentum in DC Energy, range in RS $\pi \rightarrow \mu \rightarrow e$ $> 10^6 \mu$ suppression 4π Photon Veto $>10^6\pi^0$ suppression

Background Suppression: E949 Extreme Photon Detection Efficiency

 π^{0} Rejection: >10⁶ -10⁷

Possibly the most efficient photon detector built so far.

8

 $\mathbf{K}^+ \to \pi^+ \pi^0$ Background Suppression: $21\% \to <10^{-11}$ Dual cuts: γ Veto and Kinematics (P,R,E...) γ Veto Reversed γ Veto Reversed γ Range vs. EnergyMomentum

Check for correlations

$K_L^0 \to \pi^0 \nu \overline{\nu}$ Experiments History

J. Ma 2011

 π^{0} Rejection goal: 10^{8} μ Rejection goal: 10^{5} π / μ RICH separation up to 35 GeV/c Beam tracking: 40 MHz/cm²

 $K_I^0 \to \pi^0 \nu \overline{\nu}$ at J-PARC

Impoved setup based on KEK E391a ($< 2.6 \times 10^{-8}$)

- Improved J-PARC Beam line
- Upgraded Detector
- 100 x proton intensity
- Aim: few events (S/B~1) at SM
- Under construction; start 2013
- Lackground source #evts $K_L \to \pi^0 \pi^0$ 1.8 $K_L \rightarrow \pi^+ \pi^- \pi^0$ 0.46n + residual gas0.04n + upstream veto 0.13accidental coincidence 0.102.5sum $K_L \to \pi^0 \nu \bar{\nu}$ signal 3.5

14

	J-PARC KOTO	KEK-E391a	improve ment
KL yield/spill	8.1x10 ⁶	3.3x10 ⁵	x30/sec
Run time	12 months	2 months	x6
Decay prob.	3.6%	2.1%	x2
Acceptance	4.7%	1%	x3.6
Sensitivity	0.8x10 ⁻¹¹	1.1x10 ⁻⁸	x1300

ORKA at Fermilab

> 17 institutes in six countries: Canada, China, Italy, Mexico, Russia, USA

- Six US universities
- Two US National Laboratories

> Leadership from previous BNL and FNAL US rare kaon decay experiments

Incremental Improvements • 600 MeV/c • K stopping rate x5 with comparable instantaneous rate • Larger solid angle • Acceptance x 10 • Fine segmentation, improved resolutions

Reduced backgrounds: <5% precision Overall, >100 x sensitivity 30% deviation from the SM would be a 5σ signal of NP

ORKA at Fermilab

Main Injector Slow Spill 75 KW 95 GeV/c 44% duty factor (10 s cycle, 4.4 s spill)

CDF(B0) collision hall:

Existing tunnels and hall, Rad hard, adequate space, existing superconducting magnet, A0->B0 beamline needed; (required interplay with IARC)

•The ORKA new detector payload replaces the CDF tracker volume.

E949 Central tracker (similar diameter to ORKA)

Figure 5.3: Illustration of the ORKA beam line and detector sited within the B0 collision hall.

Kaon Beamline Design

600 MeV/c separated K beam (K/π~4) Measure kaon decays at rest.

Evolution to 4th Generation Detector

- *R* & *D* underway on detector refinements
 - Efficient photon detectors
 - Adriano (INFN), Shashlyik
 - Solid state photo-sensors -- SiPMs
 - Range stack tracking -- GEM
 - Low mass drift chamber design

- Simulations studies
 - ILCroot framework established
 - Range stack segmentation and readout
 - Photon veto geometry and function
 - Target segmentation and readout
 - Drift chamber parameters
 - Kaon beam line: G4Beamline
- Preliminary engineering concepts
 - Detector support in CDF magnet
 - Installation issues
 - Power, cooling and cabling issues

ILCroot Simulations

BNL/FNAL/INFN/TRIUMF-UBC

ORKA Detector improvements

Incremental increases in signal acceptance based largely on E787/E949 measurements.

Component	Acceptance factor
$\pi ightarrow \mu ightarrow e$	2.24 ± 0.07
Deadtimeless DAQ	1.35
Larger solid angle	1.38
1.25-T B field	1.12 ± 0.05
Range stack segmentation	1.12 ± 0.06
Photon veto	$1.65^{+0.39}_{-0.18}$
Improved target	1.06 ± 0.06
Macro-efficiency	1.11 ± 0.07
Delayed coincidence	1.11 ± 0.05
Product $(R_{\rm acc})$	$11.28^{+3.25}_{-2.22}$

Additional acceptance gains expected from trigger improvements.

$\pi \rightarrow \mu \rightarrow e$ Acceptance Factors

- 1. Identify range stack counter where π^+ stops
- 2. Detect $\pi \rightarrow \mu$ decay in stopping counter
- 3. Detect $\mu \rightarrow e$ in stopping counter and neighboring counters

$\pi^+ \rightarrow \mu^+ \rightarrow e^+$ Decay Sequence
π^+ μ^+ e^+

Quantity	Acceptance	Range
π decay	0.8734	(3,105) ns
μ decay	0.9450	(0.1,10) µs
μ escape	0.98	
e ⁺ detection	0.97 ± 0.03	
Product	0.78 ± 0.02	
E949 acceptance	0.35	
Improvement factor	2.24 ± 0.07	

ORKA

Detector Improvements and $\pi \rightarrow \mu \rightarrow e$ Acceptance

- 1. Eliminate 4x multiplexing of range stack (RS) waveform digitizers used in E949.
 - Reduced loss due to accidentals
- 2. E949 RS: 19 layers (1.9cm thick), 24 azimuthal sectors. ORKA RS: 30 layers (0.95cm thick), 48 sectors.
 - Reduced accidental veto loss (μ^+ and e^+)
 - Improved discrimination of π and μ

- Improved μ identification
- Deadtime-less DAQ and trigger: π → μ → e acceptance improvements; rudimentary π → μ identification was an essential component of the K⁺ → π⁺νν̄ trigger in E787/E949.

Livetime and Delayed-Coincidence Acceptance

		Macro-efficiency		
Livetime		E949 average	0.76	
E949 livetime	0.74	E949 best week	0.84	
ORKA estimate	1.00	MiniBooNE (FY08)	0.85	
Acceptance increase	1.35	ORKA estimate	0.85 ± 0.05	
		Acceptance increase	1.11 ± 0.07	

E949 required a delayed coincidence of 2 ns between the stopped kaon and the outgoing pion to suppress prompt backgrounds.

Delayed coincidence		<i>K</i> ⁺ Decav Time
E949 acceptance	0.763	
ORKA estimate	0.851 ± 0.035	K^+ $(\uparrow\uparrow)$ π^+
Acceptance increase	1.11 ± 0.05	
		1 ns

Improved Momentum and Range Resolution and Increased Solid Angle

 π^+ Kinematics

 π^+

Scintillating Fiber Target

- E949 3.1 m long, single ended readout
- ORKA 1 m long, double ended readout, SiPMs

Acceptance Increase: 1.06±0.06

Photon Veto Improvements

E94917.3 Radiation LengthsORKA23.0 Radiation LengthsAcceptance Increase : $1.65^{+0.39}_{-0.18}$

Estimate based on simulated KOPIO PV performance Adjusted to agree with E949 PV efficiency.

Shashlyk – Calorimeter Candidate for ORKA

Shashlyk Beam Measurements

	E949	ORKA
P _p (GeV/c)	21.5	95
Duty Factor (%)	41	44
P _K (MeV/c)	710	600
Fraction of kaons that stop in target (%)	21	54
Average rate of stopping kaons/s (10 ⁶)	0.69	4.78
Accidental loss (%)	23	28
Events/yr (SM)	1.3	210

1050 Events at SM \rightarrow <5% precision

ORKA Sensitivity vs. Time

Selected ORKA Physics Opportunities

Processes that can be probed by ORKA.

Process	Current	ORKA	Comment
$K^+ \to \pi^+ \nu \bar{\nu}$	7 events	1000 events	
$K^+ \to \pi^+ X^0$	$< 0.73 \times 10^{-10}$ @ 90% CL	$< 2 \times 10^{-12}$	$K^+ \to \pi^+ \nu \bar{\nu}$ is a background
$K^+ \to \pi^+ \pi^0 \nu \bar{\nu}$	$< 4.3 \times 10^{-5}$	$< 4 \times 10^{-8}$	
$K^+ \to \pi^+ \pi^0 X^0$	$<\sim 4\times 10^{-5}$	$< 4 \times 10^{-8}$	
$K^+ \to \pi^+ \gamma$	$<2.3\times10^{-9}$	$< 6.4 \times 10^{-12}$	
$K^+ \to \mu^+ \nu_{heavy}$	$< 2 \times 10^{-8} - 1 \times 10^{-7}$	$< 1 \times 10^{-10}$	$150~{\rm MeV} < m_\nu < 270~{\rm MeV}$
$K^+ \to \mu^+ \nu_\mu \nu \bar{\nu}$	$< 6 \times 10^{-6}$	$< 6 \times 10^{-7}$	
$K^+ \to \pi^+ \gamma \gamma$	293 events	200,000 events	
$\Gamma(Ke2)/\Gamma(K\mu2)$	$\pm 0.5\%$	$\pm 0.1\%$	
$\pi^0 \to \nu \bar{\nu}$	$<2.7\times10^{-7}$	$<5\times10^{-8}$ to $<4\times10^{-9}$	depending on tech nique
$\pi^0 \to \gamma X^0$	$< 5 imes 10^{-4}$	$< 2 \times 10^{-5}$	

E787/E949: 42 publications, 26 Theses KTEV: 50 publications, 32 Theses

