Kaons at Project-X

David Jaffe

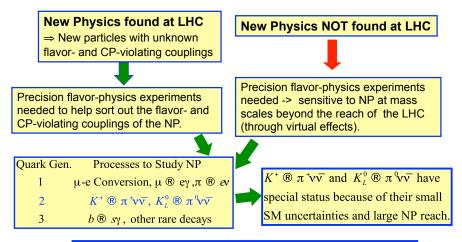
Kaon rare decay experiment: $K_L^0 \rightarrow \pi^0 v \overline{v}$

1 Kaon beam

2 Vacuum chamber where kaons decay

3 Detector to measure direction of signal photons

I Detector to measure energy of signal photons


5 Detector to tag processes that can mimic a signal

April 2013 Intensity Frontier Workshop

David Jaffe (BNL)

4

Flavor Physics in the LHC Era: Rare Decays

 $\mu - e$ Conversion and $K^+ \rightarrow \pi^+ v \overline{v}$ are immediate priorities.

* Huge gains in sensitivity are experimentally accessible.

* Smooth transitions to the Day-1 Project-X Intensity Frontier program.

David Jaffe (BNL)

3

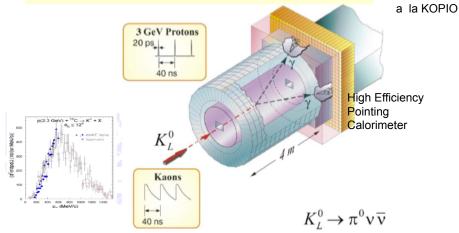
Rare K physics at Project X

Current expt $K^+ \to \pi^+ \nu \bar{\nu}$: Wide range of New Physics accessibleNA62 $K^0_L \to \pi^0 \nu \bar{\nu}$: Wide range of NP including pure CPV effectsKOTO $K^+ \to \pi^0 \mu^+ \nu$: Transverse polarization, T violationTREK $K^+ \to e^+ \nu/K^+ \to \mu^+ \nu$: Universality, LFVTREK $K^+ \to \mu^+ \nu_H$: Heavy neutrinosTREK $K^0_L \to \pi^0 \ell^+ \ell^-$: CP violationTREK $K \to \mu e(X)$: LFVK^0-interferometry (Planck scale physics)

- ▶ Pre-Project-X ORKA $K^+ \to \pi^+ \nu \bar{\nu}$ experiment will provide a smooth transition to the premium Day One Project-X experiment to measure $K_L^0 \to \pi^0 \nu \bar{\nu}$.
- ▶ After ORKA discovers new physics in $K^+ \to \pi^+ \nu \bar{\nu}$, it can move to the Project-X Kaon campus
- ▶ I will not totally neglect other kaon physics listed on this page.

The challenge: Precision measurement of $\mathcal{B}(\mathcal{K}^0_I \to \pi^0 \nu \bar{\nu})$

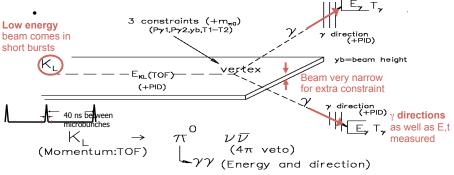
- In SM, $\mathcal{B}(K_L^0 \to \pi^0 \nu \bar{\nu}) \approx 3 \times 10^{-11}$.
 - ► To observe 1000 events with 1% efficiency, requires $\sim 3 \times 10^{15} \ K_L^0$ or three years at ~ 100 MHz of K_L^0 .
- Weak signature
 - Dubbed "Nothing in, nothing out" by many.


► B/S
$$\approx \mathcal{B}(K_L^0 \to \pi^0 X) / \mathcal{B}(K_L^0 \to \pi^0 \nu \bar{\nu}) \approx 10^{10}$$
.

• $K_L^0 \to \pi^0 \pi^0$ is the most troublesome.

- \blacktriangleright Must veto on extra particles with inefficiency $\leq 10^{-4}$
- Most neutral kaon beams have K_L^0 /neutron $\approx 10^{-2}$.
 - Must suppress $n + gas \rightarrow \pi^0 X$ with high vacuum
 - Halo must be small and controlled
 - Hermiticity requires photon veto in the beam

Must have convincing measurements of backgrounds


Project X : $K_L^0 \otimes \pi^0 v v$ Experiment Concept

- Use TOF to work in the K_L^0 c.m. system
- Identify and eliminate main 2-body background $K_L^0 \rightarrow \pi^0 \pi^0$
- Reconstruct $\pi^0 \rightarrow \gamma \gamma$ decays with high efficiency pointing calorimeter 30
- 4π solid angle photon and charged particle vetos

KOPIO Technique

- High intensity micro-bunched beam to measure K velocity
- Measure everything! (energy, position, direction, time)

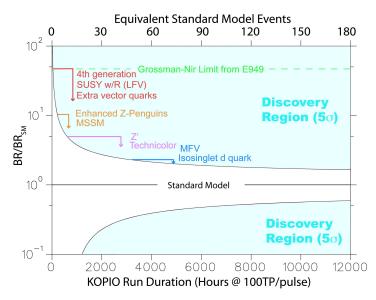


Fig. 1.1. Five- σ upper and lower discovery limits versus running time for the KOPIO experiment as discussed in the text. A branching ratio in the shaded region can be distinguished from the Standard Model prediction by at least 5 σ .

From KOPIO Conceptual Design Report 2005 David Jaffe (BNL) 25-27 April 2013

7 / 22

Fermilab Project X Neutrinos Recycler 2 MW 3 GeV 1 mA Continuous Beam Main Injector 120 GeV 38 Gev RESouth H- Source 0.75 Kaon Production vs. T_p Nuclear Muons K production (<1 GeV): $\frac{\sigma_{K}^{3 \text{ GeV}}}{\sigma_{K}^{24 \text{ GeV}}} \sim \frac{1}{10}$ $p + p \rightarrow p$ Kaons 0 (up) 10 $\frac{Proj. \ X}{AGS} \sim 300$ 10 p beam intensity: 10 K flux: $\frac{\text{Proj. X}}{\text{AGS}} \sim 30$ 10 ^{1°}_n (GeV) 10

David Jaffe (BNL)

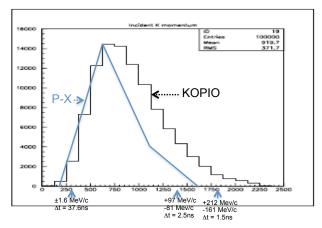
25-27 April 2013 8 / 22

Project X for KOPIO-style experiment

Advantages

- \blacktriangleright 20ps wide proton bunches with $\gg 10^{-3}$ extinction
 - K⁰_L production time distribution would be determined by target size, not proton beam
 - Suppression of interbunch background
- Higher intensity permits "pencil" beam.
 - Simpler beam-line
 - More hermetic detector
 - Increases acceptance because beam hole decreases and detector size increases
 - Improved kinematic contraint increase S/B
 - Background from decays upstream and downstream of the fiducial volume reduced

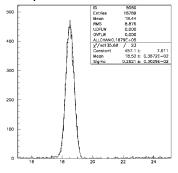
Challenges

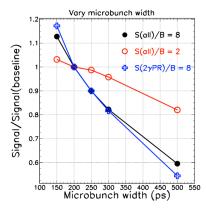

- High neutron rates (lower K/n production ratio)
- High power on target

Compare KOTO, AGS-KOPIO and PX-KOPIO

AGS	PX	КОТО	
24	3	30	T_p GeV
0.05	1.5	0.3	MW
1.1 Pt	1.0 C	? Ni	Target (λ_I)
10.6	38.8	?	Target (cm)
900	750	2100	$\overline{p_K}$ MeV
60	450	—	$10^{6} K_{L}^{0}/{ m s}/500 \mu { m SR}$
360	49	7.8	Acceptance (μ SR)
43	44	8	$10^{6}K_{I}^{0}/s$
1:1000(10)	1:2600(10)	1:26(100)	$K_L^0/n(E_{\min} \text{ MeV})$
42°	20°	16°	Beam angle
150/300	200/40	3.5/2.5	S/B per year
KOPIO CDR	Various	Wah's PX talk	References

There are technical issues with the enormous beam power and extended source (the 39cm long graphite target) for the Project-X K_I^0 beam.

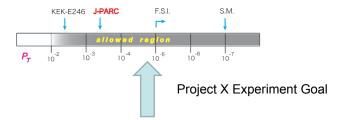

Better K_L Spectrum at Project-X


• High momentum events not only have poorer velocity resolution, they come close to the prompt flash of photons & neutrons from the μ bunch hit. Unusable K decays hurt the sensitivity since we demand only one decay per μ bunch.

Microbunching at Project-X

- KOPIO was designed for 200ps-wide microbunches.
- This was typical detector time-resolution of the era.
- Tests at the AGS achieved 244ps:

- Project-X will be capable of 50ps- wide bunches.
- KOPIO-type experiment can benefit greatly, particularly as detector resolution improves:



Prospects for $K \rightarrow \pi \nu \bar{\nu}$

E787/E949: $\mathcal{B}(K^+ o \pi^+ u ar{ u}) = (1.73^{+1.15}_{-1.05}) imes 10^{-10}$							
Goals	NA62	ORKA	PX				
Events/yr	40	200	340				
S/B	5	5	5				
Precision	10%	5%	3%				
E391a: ${\cal B}({\cal K}^0_I o\pi^0 uar u) < 2.6 imes 10^{-8}$							
Goals	KOT	O* P2	Х				
Events/y	/r 1	"20)0''				
S/B	1	5-2	10				
Precision	n	5%					
* Dhace II with higher construity planned							

* Phase II with higher sensitivity planned.

$K_{\mu3}$ T-Violation at Project X

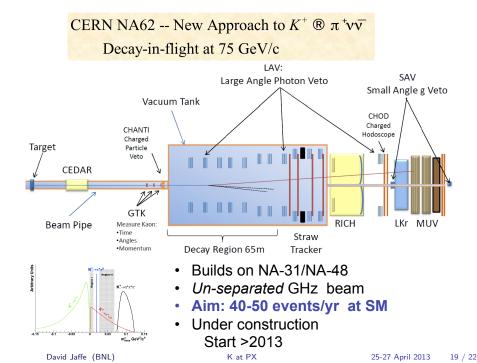
- Aim for 20-50 x statistics of JPARC TREK ORKA 14 m Beam line at 500MeV K/π ~ 4
- Potential background from π⁺ decay in flight Need small target, high resolution tracking
- Control of systemmatic effects at 10⁻⁵ level! TREK estimates <10⁻⁴

$K_I^0 \rightarrow \pi^0 \ell^+ \ell^-$ experiments at Project-X

Measurement of direct CPV in $K_L^0 \to \pi^0 \ell^+ \ell^-$ suffers from irreducible $K_L^0 \to \gamma \gamma \ell^+ \ell^-$ background and from indirect CPV and non-CPV amplitudes.

- Mitigation by superb π^0 mass resolution and huge statistics, or
- Measuring Im(λ_t) using $K_S^0 K_L^0$ interference in $K^0 \to \pi^0 e^+ e^-$ (H.Nguyen, Fermilab-TM-2438-PPD). Requires a very compact detector ($c\tau_s = 2.6$ cm) and huge proton flux ($\sim 5 \times 10^{23}$, ~ 10 years at 1.5MW PX) for 5% measurement of Im(λ_t), or
- For K⁰_L → π⁰μ⁺μ⁻, measure muon polarization asymmetries, branching ratio and lepton energy asymmetry to disentangle the CPC and indirect CPV amplitudes and K⁰_L → γγμ⁺μ⁻ background (M.Diwan, H.Ma, L.Trueman, PRD**65** 054020 (2002)), or
- Combine the interference and polarization techniques for $K_L^0 \rightarrow \pi^0 \mu^+ \mu^-$ (Bob Tschirhart's idea)

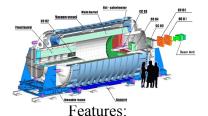
Summary: Kaon physics at Project X


An unprecedented opportunity to find and study new physics with rare kaon decays

- Measure $K^0_L \to \pi^0 \nu \bar{\nu}$ and $K^+ \to \pi^+ \nu \bar{\nu}$ with high precision
 - Builds on past and current experiements at BNL, CERN, JPARC and FNAL/MI
 - Achieve the ultimate precision covering all accessible non-SM physics
 - Complementary to LHC for studying flavor interactions at high mass scales
- Project X could explore many rare kaon processes
 - New CP and T violation
 - Lepton universality
 - Lepton flavor violation
 - Searches for scalar and pseudoscalar interactions, exotics....

Resources for this talk

- 1. Project X Kaon Experiments, Douglas Bryman, The Project X Physics Study, June 2012 FNAL.
- In-flight neutral kaon beams for precision kaon decay studies, Laurence Littenberg, Snowmass Workshop on Frontier Capability, 17-20 April 2013 BNL.
- The Project X Kaon Physics Research Program Editors: D. Bryman (UBC), R. Tschirhart (Fermilab) August 31st, 2010
- 4. Design of the neutral K_L^0 beamline for the KOTO experiment, T.Shimogawa, for the J-PARC E14 KOTO collaboration, NIM-A 623 (2010) 585-587
- 5. The J-PARC KOTO Experiment, Yau WAH, Fermilab Project-X Workshop June 2012
- 6. Measuring $Im(\lambda_t)$ using $K_S K_L$ interference in $\pi^0 e^+ e^-$ Hogan Nguyen, Fermilab Project-X Workshop November 2009
- 7. Muon decay asymmetries from $\mathcal{K}_L^0 \to \pi^0 \mu^+ \mu^-$ decays Milind V. Diwan, Hong Ma, and T. L. Trueman, Phys. Rev. D **65** 054020.
- 8. KOPIO CDR 2005


Current rare K experiments

 $K_I^0 \otimes \pi^0 \nu \overline{\nu}$

KEK PS E391a → JPARC KOTO with KTEV CsI

E391a Result: $B(K_{L}^{0} \otimes \pi^{0}vv) < 2.4 \times 10^{-8} (90\% CL)$

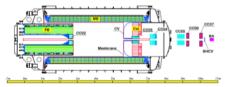
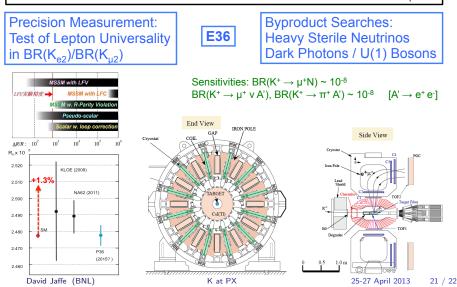



FIG. 1: Cross section of the E391a detector. K_L^0 's enter from the left side.

- Pencil Beam , High P_T selection
- High acceptance
- Reliance on high photon veto efficiency
- Sensitivity goal: ~SM level: 2.8 events S/B~1

The TREK Program at J-PARC

E06: Search for T-Violating Transverse Muon Polarization in $K_{\mu3}$

The Secret of Finding Rare Decays

