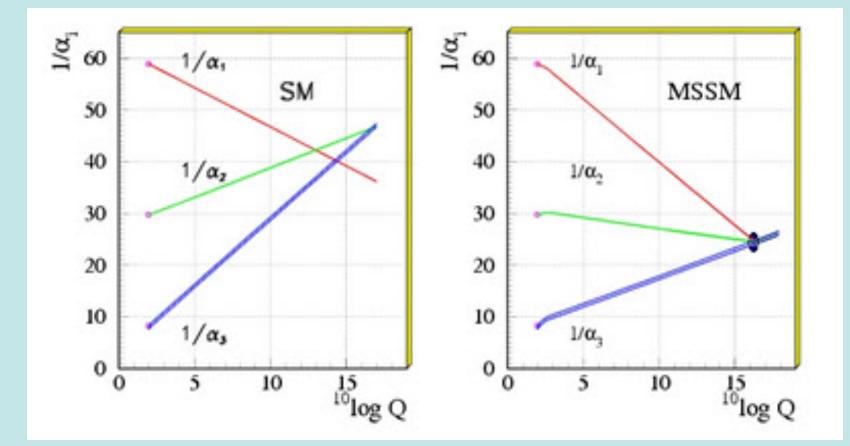
LHC Findings and The Intensity Frontier

William J. Marciano April 25, 2013 Argonne Workshop

Early LHC "Lessons"

 <u>SM Higgs Scalar Discovered!</u>: m_H=125-126GeV After 45 years Weinberg was right. Great Discovery but reopens old Issues. $\lambda \Phi^4$ theory: Trivial, Quadratic Divergences, Vacuum stability... **Higgs Properties become a primary goal Branching Ratios (Couplings), - Precision! Anomalies!** ATLAS $BR(H \rightarrow \gamma \gamma) \approx 1.5 BR(H \rightarrow \gamma \gamma)_{SM}$ Anomalous? Maybe? **New CP Violation Source?**

1) <u>Implications for edms!</u> d_e , d_n , d_p


No Sign of Supersymmetry (yet) LHC, MEG, g-2, Theory Tension

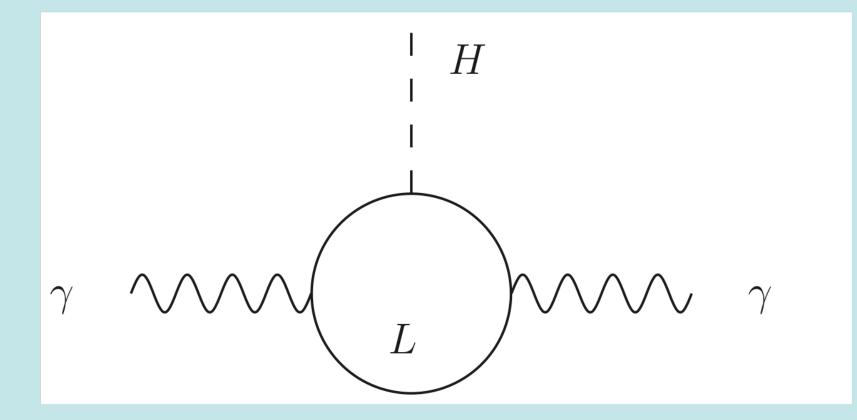
Early LHC tension $m_{susy} \ge 1, 3, 10...$ TeV Naturalness? Recent BR($\mu \rightarrow e\gamma$) $\le 5.7 \times 10^{-13}$ MEG (Motivated by SUSY) Muon Anomalous Magnetic Moment (3.6 sigma deviation) What about SUSY GUT Unification?

What if m_{susy}≥10TeV?

- **2)** <u>Muon g-2</u>, (Dark Photon Alternative Solution?) Electron Scattering, Rare <u>K</u>, π, μ, B... Decays
- 3) <u>Proton Decay</u> (p→e+ π^0 easier discovery?) Major Goal of LBNE! Window to Unification! sin²θ_W(m_Z)^{exp}=0.23125 better agreement with GUTS!

<u>SUSY GUT Unification</u> <u>S. Raby PDG (2010)</u>

Properties of the Higgs Boson?

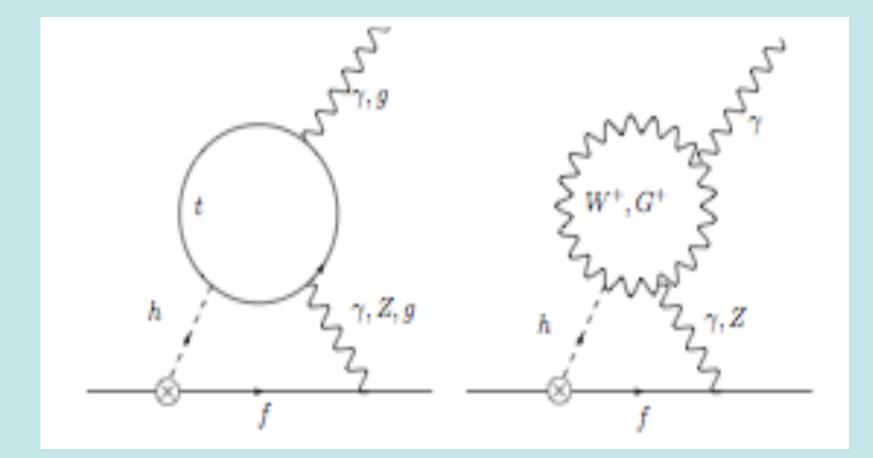

<u>The Higgs Boson</u> Now the Center of Attention <u>Where will it lead us?</u>

Higgs (125-126GeV) Discovery & Properties

- ATLAS and CMS Experiments have strong evidence for a
- Higgs like (spin 0) new particle with mass 125-126GeV
 Expected Higgs SM Properties

H Decay Channel	Branching Ratio
$b\overline{b}$	0.578
WW^*	0.215
gg	0.086
$ au^+ au^-$	0.063
$c\bar{c}$	0.029
ZZ^*	0.026
$\gamma\gamma$	$2.3 imes10^{-3}$
$Z\gamma$	$1.5 imes10^{-3}$
$H \to ZZ^* \to \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$	$1.2 imes10^{-4}$
$H ightarrow ZZ^* ightarrow \ell^+ \ell^- u ar u$	$3.6 imes10^{-4}$

 $\frac{New \ Physics \ Loops \ or \ Pseuoscalar \ Mixing \ etc.}{New \ CP \ Violation \ Source \ (eg. \ Voloshin)} \\ aHF^{\mu\nu}F_{\mu\nu} + b^{1/_2} \varepsilon^{\mu\nu\alpha\beta}HF_{\mu\nu}F_{\alpha\beta} \ (CP \ odd)$


Higgs 2 Loop Effects Important

1977 **Bjorken and Weinberg**: hue coupling more important for $\mu \rightarrow e\gamma$ at 2 loops than 1 loop!

1990 **Barr and Zee**: 2 loop hee coupling can lead to larger d_e (edm) than 1 loop contribution!

1995 **Czarnecki, Krause & WJM:** show 2 loop Higgs contribution (~4x10⁻¹¹) to the g_{μ} -2 is ~1000 times larger than 1 loop! **2 loop dipole moment examples**:

McKeen, Pospelov, Ritz Huber, Pospelov, Ritz

Some Current edm Bounds

fermion $|d_f^{exp}|$ e-cm

- e <1x10⁻²⁷ (from TFI)
- p <8x10⁻²⁵ (from d_{Hg})
- n <3x10⁻²⁶

electron & neutron bounds roughly comparable (Very Powerful SUSY Constraints)

> Scale as 1/m²_{susy} (1 loop) m_{susy}~ 0.1PeV Probed! McKeen, Pospelov, Ritz (EDM Champions)

a_f vs d_f (very roughly)

 2 loop Higgs contribution: a_µ(H)≈fewx10⁻¹¹ (exp~ 6x10⁻¹⁰) a_e(H)≈5x10⁻¹⁶ (exp~10⁻¹²)
 Unobservably Small Effect!

2 Loop Higgs edm contribution: $d_e(H) \approx 10^{-26} \sin \phi e - cm$ roughly $|d_n(H)| \approx |d_p(H)| \approx 5 \times 10^{-26} \sin \phi e - cm$

Already d_e bound roughly implies $\sin \phi \le 0.1$ <u>CP conttribution to $H \rightarrow \gamma \gamma$ </u> $\sin^2 \phi \le 0.01$ Unlikely to be directly observable, but edm experiments can explore down to $\sin \phi \approx O(10^{-3})$! <u>Unique!</u>

Great Future Expectations

Several orders of magnitude improvement expected

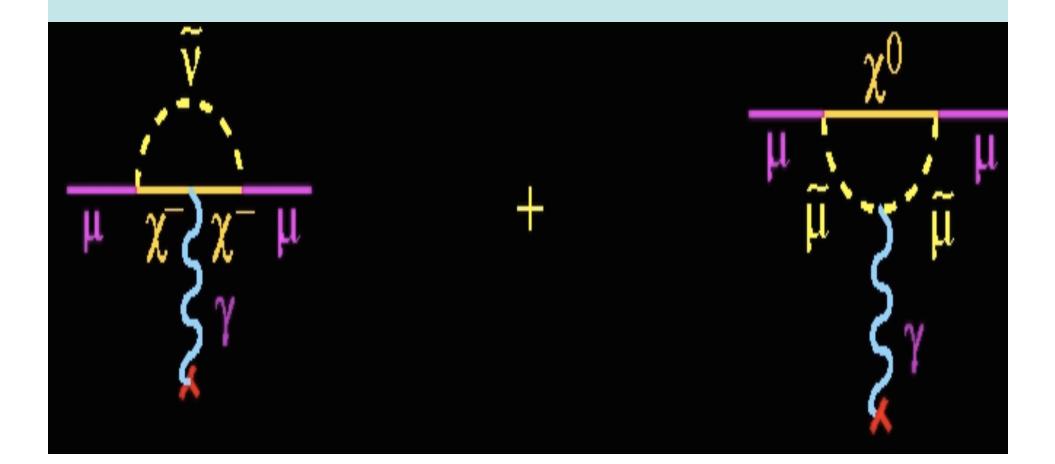
 d_n →10⁻²⁷-10⁻²⁸ e-cm Neutron Spallation/Reactor Sources d_e →10⁻²⁹ e-cm or better! $d_p \& d_D$ →10⁻²⁸-10⁻²⁹e-cm Storage Ring Proposal (BNL/COSY)

If Hγγ coupling violates CP: d_e:d_n:d_p:: 1:-5:5 roughly

 d_e atomic, d_n nuclear, d_p hep all must do exps. Potentially only accesss to hee, huu & hdd couplings

What if g_{μ} -2 discrepency not due to SUSY?

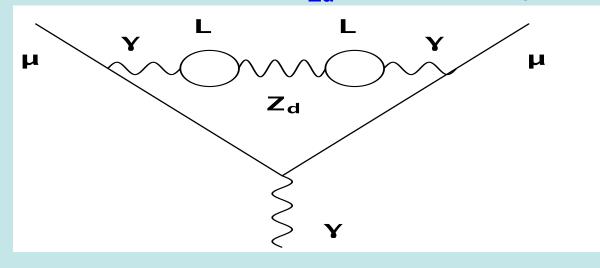
•
$$\Delta a_{\mu} = a_{\mu}^{exp} - a_{\mu}^{SM} = 286(80) \times 10^{-11} (3.6 \sigma!)$$

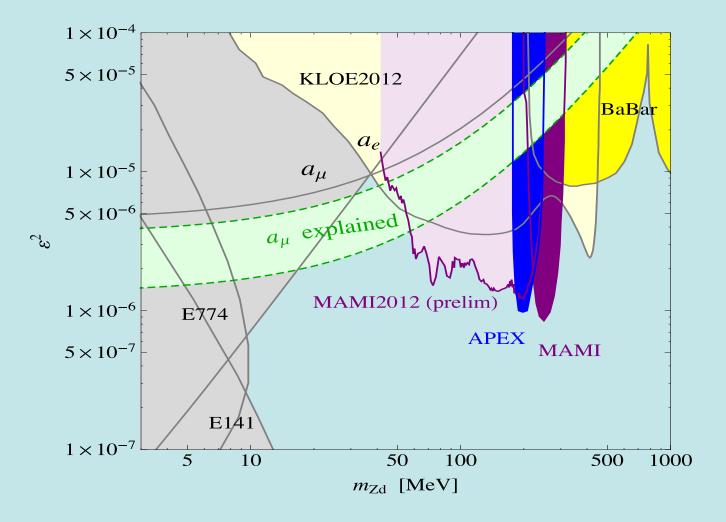

This is a very large deviation!

Interpretations

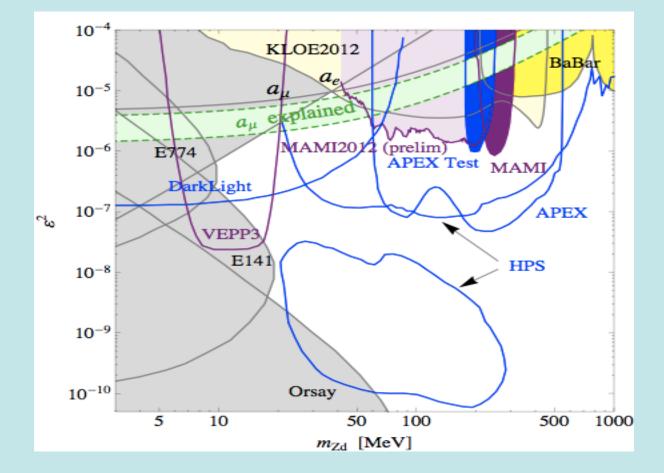
Generic 1 loop SUSY Contribution:

 $a_{\mu}^{SUSY} = (sgn\mu)130x10^{-11}(100GeV/m_{susy})^{2} tan\beta$ tan $\beta \approx 3-40$, $m_{susy} \approx 100-500GeV$ <u>Some LHC Tension</u>


SUSY 1 loop a_{μ} Corrections (Still Most Likely Scenario)

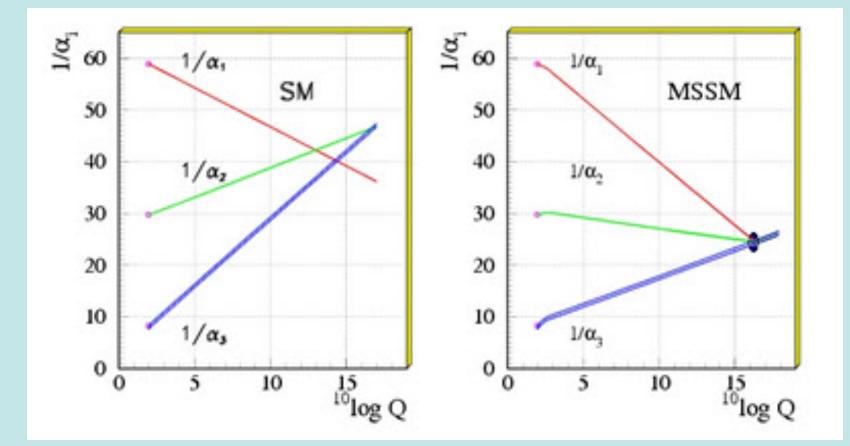

<u>Other Explanations: Hadronic eter Data? HLBL (3loop)?</u> Multi-Higgs Models <u>(2 loop effects)</u> Extra Dimensions<2TeV, Heavy Z', Dynamics... Light Higgs Like Scalar <10MeV? * <u>Dark Photons (Fayet, Pospelov...)</u>

Kinetic Mixing U(1)_YxU(1)_d $\epsilon e Z_d^{\mu} J_{\mu}^{em} \epsilon \approx \alpha/\pi \approx \frac{2 \times 10^{-3}}{2 \times 10^{-3}}$


 a_{μ}^{Zd} =α/2πε²F(m_{Zd}/m_µ), F(0)=1 solves g_{μ} -2 discrepancy for ε²≈3-5x10⁻⁶ & m_{Zd}≈20-50MeV (see figure)

Current Bounds & Future Dark Photon Sensitivity Generally Assume $Br(Z_d \rightarrow e^+e^-)=1$

GUT Coupling Unification


```
<u>Current Values</u>: \alpha_3(m_Z)=0.117(1)
\alpha_2(m_Z)=0.0338(1)
\alpha_1(m_Z)=0.0170(1)
```

Come together but do <u>not</u> unify without an intermediate mass scale: m_{susy}, m_R SO(10), m_{scalar}...

Generic SUSY GUT $\rightarrow m_{\chi} \approx (1 \text{TeV/m}_{susy})^{2/15} \times 10^{16} \text{GeV}$ Also depends on other mass splittings (eg. Scalars) **Proton Partial Lifetime:**

τ(p→e⁺π⁰)≈(1TeV/m_{susy})^{8/15}x10^{35±1}yr Uncertainties: Matrix Elements (Lattice), α₃(m_z), mass splittings, particle content...

<u>SUSY GUT Unification</u> <u>S. Raby PDG (2010)</u>

Predictions of SUSY GUTS Senjanovic & WJM PRD1982

 $m_X \approx (1 \text{TeV/m}_{susy})^{2/15} \times \frac{10^{16} \text{GeV}}{110^{16} \text{GeV}}$ $\tau(p \rightarrow e^+ \pi^0) \approx (1 \text{TeV/m}_{susy})^{8/15} \times 10^{35 \pm 1} \text{yr}$ $\tau(p \rightarrow e^+ \pi^0) \approx 3 \times 10^{34 \pm 1} \text{yr}$ for $m_{susy} \approx 10 \text{TeV}$ $\tau(p \rightarrow e^+ \pi^0) \ge 1.3 \times 10^{34} \text{yr}$ (suoer-K) not far away?

 $sin^2 \theta_W(m_Z)=0.233 - 0.0007ln(m_{susy}/1TeV)$ $sin^2 \theta_W(m_Z)^{exp}=0.23125$ (favors $m_{susy}\sim 10TeV$) take with a grain of salt!

LHC/ Proton Decay Complementarity

LHC tension with m_{susv} ~ 1 TeV (squarks & gluinos)

SUSY GUTS prefer heavier $m_{susy} \approx 3-10 \text{TeV}$ Heavier $m_{susy} \Rightarrow$ shorter $\tau(p \Rightarrow e^+\pi^0) \approx (1 \text{TeV}/m_{susy})^{8/15} \times 10^{35\pm 1} \text{yr}$

Heavier m_{susy} makes p→e⁺π⁰ easier to observe! but it makes direct SUSY at the LHC less likely <u>Together They Squeeze SUSY</u> <u>Almost a No Lose Theorem</u>

LBNE vs SuperK

 SuperK 22.5Kton Fiducial Vol. H₂O Cerenkov will have run 20 yrs before LBNE starts ~ 400Kton-yr LAr advantage factor <u>3-5</u> (use p→e⁺π⁰ + n→e⁺π⁻) lower backgrounds? Etc.

LBNE 34Kton LAr x10yr ~ m_{GUT} =10¹⁶GeV sensitivity! Roughly equivalent to 100-200Kton water

<u>Summary</u>

EDMs extremely well motivated by possible CP violation in Hyy and possible heavy m_{susy} should be pushed as far as possible

a_u 3.6 sigma discrepancy SUSY or something else (dark photon)?

Primary LBNE Goal: CP violation in v oscillations Proton Decay has Similar Detector Requirements (Fortuitous) Heavier m_{SUSY} makes proton decay discovery more likely!

Start as soon as possible

"He who hesitates is lost"