The Curiosity Frontier

Roni Harnik, Fermilab

Why Are We Here?

*** We are curious**.

- * We are like kids that have many many questions.
- * We receive great pleasure from finding things out.

What are we curious about?

- Is there any physics beyond the standard model? *
- What sets the EW scale? Is it natural? *
- Is the world supersymmetric? *
- Is there a Higgs boson? *
- What is Dark Matter? *
- Is there a dark sector? *
- What is Dark Energy? *
- Can the CC be natural? *
- Are we part of a Universe or a Multiverse? *
- What sets the fermion masses?
- Why is there more matter than anti-matter? *
- Are neutrinos their own anti-particles? *
- Are there sterile Neutrinos? *
- Do neutrino interact in a non standard way? *
- What solves strong CP? *
- Is there an axion? Is it Dark matter? *
- How many space-time dimensions do we live in? *
- Do the forces unify? *

.....

- Is there any physics beyond the standard model? *
- What sets the EW scale? Is it natural? *
- Is the world supersymmetric? *
- Is there a Higgs boson? Is it the SM Higgs Boson? *
- What is Dark Matter? ж
- Is there a dark sector? *
- What is Dark Energy? *
- Can the CC be natural? *
- Are we part of a Universe or a Multiverse? *
- What sets the fermion masses?
- Why is there more matter than anti-matter? *
- Are neutrinos their own anti-particles? *
- Are there sterile Neutrinos? *
- Do neutrino interact in a non standard way? *
- What solves strong CP? *
- Is there an axion? Is it Dark matter? *
- How many space-time dimensions do we live in? *
- Do the forces unify? *

.....

- Is there any physics beyond the standard model? *
- What sets the EW scale? Is it natural? *
- Is the world supersymmetric? *
- Is there a Higgs boson? Is it the SM Higgs Boson? *
- What is Dark Matter? ж
- Is there a dark sector? *
- What is Dark Energy? *
- Can the CC be natural? *
- Are we part of a Universe or a Multiverse? *
- What sets the fermion masses?
- Why is there more matter than anti-matter? *
- Are neutrinos their own anti-particles? *
- Are there sterile Neutrinos? *
- Do neutrino interact in a non standard way? *
- What solves strong CP? *
- Is there an axion? Is it Dark matter? *
- How many space-time dimensions do we live in? *
- Do the forces unify? *

.

Note! These questions do not belong to any frontier.

They are questions that drive our field.

Frontier-ology

- * The more technical reason we're here is we want to know how to best answer these questions.
- We have a bunch of experimental tools that can (hopefully) answer them.
- * At some point (for practical purposes) the **tools** we use were divided into 3 groups, or frontiers.

* The questions, and the physicist that are curious about them, do not fall into these groups.

The Curiosity Frontier

Curiosity

- * What drives the field is our childish curiosity. How does Nature work?
- So lets think like children!
- If a child is curious about something she goes at it with all her senses.
 All her tools.
 All "frontiers".

usually done simultaneously! Speaking of child-like curiosity... What's that Box over there? Speaking of child-like curiosity... What's that Box over there?

Speaking of child-like curiosity... What's that Box over there?

Goody! a present!!! \ What is it?? Oh BOy!

So, how does a child approach this? lets dissect her actions in slow motion.

The theorist springs into action:

The theorist springs into action:

wow! mommy! what is it?! I bet it a bike! I asked for a bike... Maybe its a bus! or a doll? I can fit a bunch of extra dimensions in there...

The theorist springs into action:

wow! mommy! what is it?! I bet it a bike! I asked for a bike... Maybe its a bus! or a doll? I can fit a bunch of **extra dimensions** in there...

2.Observe:

Cosmic frontier type observation:

The theorist springs into action:

wow! mommy! what is it?! I bet it a bike! I asked for a bike... Maybe its a bus! or a doll? I can fit a bunch of extra dimensions in there...

2.Observe:

Cosmic frontier type observation:

Wow! cool wrapping paper! looks very homogeneous, But Its too small to be a bike....

Answer the question *directly*. Head on.

Answer the question *directly*. Head on.

But... sometimes you don't get the answer But just a clue. Or just another BOX and another...

"Intensity"

Answer the question *directly*. Head on.

But... sometimes you don't get the answer But just a clue. Or just another BOX and another...

4. Rattle the box, feel it, Listen closely:

Though it does not give a definitive answer, sometimes the giveaway clue come from *indirect* observation:

Answer the question *directly*. Head on.

But... sometimes you don't get the answer But just a clue. Or just another BOX and another...

4. Rattle the box, feel it, Listen closely:

Though it does not give a definitive answer, sometimes the giveaway clue come from *indirect* observation:

"Intensity"

hmmm, its not that heavy... But it feels sort of hard... lets shake it a Bit and listen...

- Is there any physics beyond the standard model? *
- What sets the EW scale? Is it natural? *
- Is the world supersymmetric? *
- Is there a Higgs boson? Is it the SM Higgs Boson? *
- What is Dark Matter? ж
- Is there a dark sector? *
- What is Dark Energy? *
- Can the CC be natural? *
- Are we part of a Universe or a Multiverse? *
- What sets the fermion masses?
- Why is there more matter than anti-matter? *
- Are neutrinos their own anti-particles? *
- Are there sterile Neutrinos? *
- Do neutrino interact in a non standard way? *
- What solves strong CP? *
- Is there an axion? Is it Dark matter? *
- How many space-time dimensions do we live in? *
- Do the forces unify? *

.....

Do Intensity Frontier experiments help satisfy our curiosity?

of course! Here are examples.

Higgs

Is it the SM Higgs Boson?

Note: Stereotypically, the Higgs is in the "energy frontier". But recall, the questions do not get divided.

Higgs

- * A timely topic.
- * Probing Higgs couplings is a pressing goal.
- * A remarkable opportunity to look for NP.

How about non-SM Higgs coupling?

Higgs & Flavor Violation

* In the presence of new physics, Yukawa couplings can violate flavor:

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots$$

* Any fermion bilinear is possible: (UV models are easy to come By)

$$\begin{bmatrix} \tau \mu & \tau e & \mu e \\ tc & tu & \dots \end{bmatrix}$$

* How large can FV be? Very roughly- $|Y_{ij}Y_{ji}| \lesssim \frac{m_i m_j}{v^2}$ Anything Below this is "natural".

Higgs couplings to μe

* Higgs coupling to μe is constrained, e.g. by:

Higgs couplings to μe

* Higgs coupling to μe is constrained, e.g. by:

Higgs couplings to μe

Outside of LHC reach.

Probing "natural" models.

 $|\text{Im}(Y_{e\tau}Y_{e\tau})| < 1.1 \times 10^{-8}$

starting to probe "natural" models.

<u>Note</u>: We get a similar bound on top-up-Higgs couplings from the neutron EDM.

Higgs and EDM's

* Higgs couplings to photons can violate CP:

$$c_{\gamma}\frac{\alpha}{\pi v}hF_{\mu\nu}F^{\mu\nu} + \tilde{c}_{\gamma}\frac{\alpha}{2\pi v}hF_{\mu\nu}\tilde{F}^{\mu\nu}$$

- * A potential explanation to an enhanced di-photon $\mathcal{L}_{eff} = hF_{\mu\nu}hF_{\mu\nu}F^{\mu\nu} + \frac{1}{\tilde{\Lambda}^2}hF_{\mu\nu}F^{\mu\nu} + \cdots$
- ***** $AB_{\gamma\gamma}$ it $t_{+}c_{\alpha} a_{\Lambda^{2}\alpha}^{\gamma^{2}} a_{A_{SM}} e^{\beta}$ to the electron EDM:

$$\sum_{n=1}^{\infty} \frac{|d_e| < 1.05 \times 10^{-27} e \text{ cm}}{\Delta BR_{\gamma\gamma}} < 1.6 \times 10^{-4}$$

McKeen, Pospelov, Ritz (1208.4597)

High Scale SUSY

Meson Mixing

 K mixing is probing the 100-1000 TeV. Particularly if CPV phase is of O(1).

CPV in D decays is also promising (~100 TeV in the coming years).

precise limit is model dependent, But 1000 TeV is with reach!

LFV

* Sleptons may be lighter th

* $\mu \rightarrow e\gamma$ and $\mu 2e$ are complementary (in tanß and ino masses).

Back to the Curiosity List...

How much of it can intensity experiments shed light on?

Curiosity List

- Is there any physics beyond the standard model?
- What sets the EW scale? Is it natural?
- * Is the world supersymmetric?
- * Is it the Higgs boson?
- What is Dark Matter?
- Is there a dark sector?
- What is Dark Energy?
- Can the CC be natural?
- * Are we part of a Universe or a Multiverse?
- What sets the fermion masses?
- * Why is there more matter than anti-matter?
- * Are neutrinos their own anti-particles?
- Are there sterile Neutrinos?
- Do neutrino interact in a non standard way?
- What solves strong CP?
- Is there an axion? Is it Dark matter?
- How many space-time dimensions do we live in?
- Do the forces unify?

*

Curiosity List

- * Is there any physics beyond the standard model? EveryBody.
- What sets the EW scale? Is it natural?
- * Is the world supersymmetric? EDMs g-2 LFV
- ✤ Is it the Higgs boson? EDMs LFV
- What is Dark Matter?
- * Is there a dark sector? APEX g-2 Short Baseline
- What is Dark Energy?
- Can the CC be natural?
- * Are we part of a Universe or a Multiverse?
- * What sets the fermion masses? EDMs LFV QFV
- * Why is there more matter than anti-matter? EDMs LBNE QFV
- * Are neutrinos their own anti-particles? $\bigcirc \lor \beta \beta$.
- * Are there sterile Neutrinos? Short Baseline
- * Do neutrino interact in a non standard way? LBNE/Nova Short Baseline
- What solves strong CP? EDMs
- * Is there an axion? Is it Dark matter? time varying EDMs
- ***** How many space-time dimensions do we live in? $\downarrow \Box \lor \Box \lor \Box \Box \lor$
- Do the forces unify? LBNE/proton decay
- *

Curiosity List

- * Is there any physics beyond the standard model? Everybody.
- What sets the EW scale? Is it natural?
- * Is the world supersymmetric? EDMs g-2 LFV
- ✤ Is it the Higgs boson? EDMs LFV
- What is Dark Matter?
- * Is there a dark sector? APEX g-2 Short Baseline
- What is Dark Energy?
- Can the CC be natural?
- * Are we part of a Universe or a Multiverse?
- What sets the fermion masses? EDMs LFV QFV
- * Why is there more matter than anti-matter? EDMs LBNE QFV
- * Are neutrinos their own anti-particles? $\bigcirc \lor \beta \beta$.
- * Are there sterile Neutrinos? Short Baseline
- * Do neutrino interact in a non standard way? LBNE/Nova Short Baseline
- What solves strong CP? EDMs

.....

- * Is there an axion? Is it Dark matter? time varying EDMs
- * How many space-time dimensions do we live in? $\Box \nabla \nabla$
- Do the forces unify? LBNE/proton decay

Not too Shabby!

To Conclude

* We are driven by curiosity.

- * To satisfy our yearning to find things out we should use *all* of our tools.
- * The Intensity frontier is an important tool.

Learn from our kidsexplore the world with all of our senses simultaneosly.

To Conclude

* We are driven by curiosity.

- * To satisfy our yearning to find things out we should use *all* of our tools.
- * The Intensity frontier is an important tool.

Learn from our kidsexplore the world with all of our senses simultaneosly.

To Conclude

* We are driven by curiosity.

- * To satisfy our yearning to find things out we should use *all* of our tools.
- * The Intensity frontier is an important tool.

Learn from our kidsexplore the world with all of our senses simultaneosly.

(Yes, that's my son eating Peskin).

Deleted scenes

Recipe:

NP for modified Flavor Flavor Violating Higgs Couplings + Violation = Higgs Jecays $\Delta a_{\mu} \equiv a_{\mu}^{\exp} - a_{\mu}^{SM} = (2.87 \pm 0.63 \pm 0.49) \times 10^{-9}$

***** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices all over the place.

3. Re-diagonalize mass matrix.

***** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices all over the place.

3. Re-diagonalize mass matrix.

***** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices all over the place.

3. Re-diagonalize mass matrix.

$$\mathcal{L} = \lambda_f H \bar{f} f + \frac{(H^{\dagger} H) H \bar{f} f}{\Lambda^2}$$

***** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices all over the place.

3. Re-diagonalize mass matrix.

***** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices all over the place.

3. Re-diagonalize mass matrix.

***** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices all over the place.

3. Re-diagonalize mass matrix.

 $\mathcal{L} = \lambda_f H \bar{f} f + \frac{(H^{\dagger} H) H \bar{f} f}{\cdot} \checkmark$

***** UV Recipe for FV Higgs:

I. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices all over the place.

3. Re-diagonalize mass matrix.

* Writing it a bit more neatly, we get:

$$\mathcal{L}_{SM} = \bar{f}_L^j i \not{D} f_L^j + \bar{f}_R^j i \not{D} f_R^j - \left[\lambda_{ij} (\bar{f}_L^i f_R^j) H + h.c. \right] + D_\mu H^\dagger D^\mu H - \lambda_H \left(H^\dagger H - \frac{v^2}{2} \right)^2$$

$$\Delta \mathcal{L}_Y = -\frac{\lambda'_{ij}}{\Lambda^2} (\bar{f}^i_L f^j_R) H(H^{\dagger} H) + h.c. + \cdots$$

* Writing it a bit more neatly, we get:

$$\mathcal{L}_{SM} = \bar{f}_L^j i \not{D} f_L^j + \bar{f}_R^j i \not{D} f_R^j - \left[\lambda_{ij} (\bar{f}_L^i f_R^j) H + h.c. \right] + D_\mu H^\dagger D^\mu H - \lambda_H \left(H^\dagger H - \frac{v^2}{2} \right)^2$$

or $Y_{ij} = \frac{m_i}{v} \delta_{ij} + \frac{v^2}{\sqrt{2}\Lambda^2} \hat{\lambda}_{ij}$ An arbitrary matrix!

"Natural" FV

***** FV that's too large comes at a tuning price:

$$\sqrt{2}m = V_L \left[\lambda + \frac{v^2}{2\Lambda^2} \lambda' \right] V_R^{\dagger} v \qquad \qquad \sqrt{2}Y = V_L \left[\lambda + 3\frac{v^2}{2\Lambda^2} \lambda' \right] V_R^{\dagger}$$

* Requiring no cancelation in the determinant

$$Y_{\tau\mu}Y_{\mu\tau}| \lesssim \frac{m_{\mu}m_{\tau}}{v^2}$$
 (same for any pair of fermions)

In an era of data, considerations of fine tuning are not of huge importance... But we'll keep it in the back of our mind.

LFV Summary

* τ - μ is wide open. **Opportunity for LHC!**

LFV Summary

* Same for $\tau - e$. **Opportunity for LHC!**

LFV Summary

Channel	Coupling	Bound	
$\mu ightarrow e\gamma$	$\sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	$< 3.6 \times 10^{-6}$	_
$\mu \rightarrow 3e$	$\sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	< 0.31	
electron $g-2$	$\operatorname{Re}(Y_{e\mu}Y_{\mu e})$	$-0.019\ldots 0.026$	
electron EDM	$ \mathrm{Im}(Y_{e\mu}Y_{\mu e}) $	$< 9.8 \times 10^{-8}$	
$\mu \to e$ conversion	$\sqrt{ Y_{\mu e} ^2 + Y_{e\mu} ^2}$	$<4.6\times10^{-5}$	
M - \overline{M} oscillations	$ Y_{\mu e} + Y_{e\mu}^* $	< 0.079	
$\tau \to e\gamma$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	< 0.014	_
$ au ightarrow e \mu \mu$	$\sqrt{ Y_{\tau e} ^2 + Y_{e\tau} ^2}$	< 0.66	
electron $g-2$	$\operatorname{Re}(Y_{e\tau}Y_{\tau e})$	$[-2.1\dots 2.9] \times 10^{-3}$	
electron EDM	$ \mathrm{Im}(Y_{e au}Y_{ au e}) $	$< 1.1 \times 10^{-8}$	
$\tau \to \mu \gamma$	$\sqrt{ Y_{\tau\mu} ^2 + Y_{\mu\tau} ^2}$	$< 1.6 \times 10^{-2}$	_
$ au ightarrow 3\mu$	$\sqrt{ Y_{ au\mu}^2 + Y_{\mu au} ^2}$	< 0.52	
muon $g-2$	$\operatorname{Re}(Y_{\mu\tau}Y_{\tau\mu})$	$(2.7 \pm 0.75) \times 10^{-3}$	many
muon EDM	$\operatorname{Im}(Y_{\mu\tau}Y_{\tau\mu})$	-0.81.0	processes to
$\mu \to e \gamma$	$(Y_{\tau\mu}Y_{\tau e} ^2 + Y_{\mu\tau}Y_{e\tau} ^2)^{1/4}$	$< 3.4 \times 10^{-4}$	consider

Meson Mixing

neutron EDM [29]

 $<4.4\times10^{-8}$

 $\operatorname{Im}(Y_{ut}Y_{tu})$

Top Flavor Violation

* But, top decays are interesting:

