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violation & squarks at LHC suggest 
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• •Flavor constraints 
satisfied for soft masses 
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High-scale SUSY
•Scalar, higgsino masses all generated 

easily at a high scale

•Gaugino masses protected by a 
symmetry, loop-suppressed

Msf ⇠ µ ⇠ ⇤SUSY

•Flavor constraints (   ) limit✏K
⇤SUSY & few ⇥ 100 GeV

•Increased importance of 
LR observables
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Proton charge radius in mu-H
•H, D spectroscopy:

•e-p scattering:

•Muonic H:
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Stueckelberg Portal

•Neutrino & (Quark) Flavor constraints help 
motivate “Stueckelberg Portal”
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2
V↵�F

↵�

•Can couple in a MFV way: look at taus

- Rare tau decays

- 2-loop APV

•What to expect?
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In progress with Pospelov

Enhanced PV-
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axial coupling
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(         held fixed)
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Higher-dim. operators for lepton 
masses: see Roni’s talk tomorrow for 
effects on Higgs’ properties
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didn’t do the experiments

•There are some good reasons to think 
New Physics could show up here first

•New ideas, thoughts, etc. welcome!
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