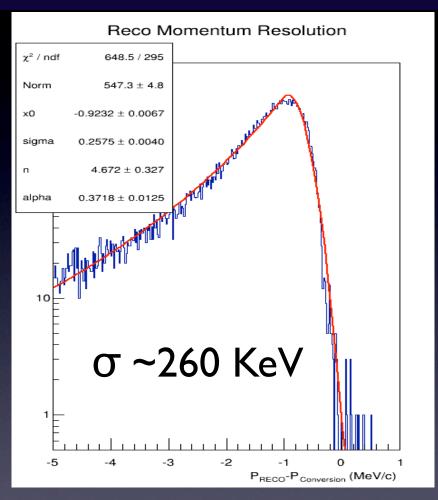
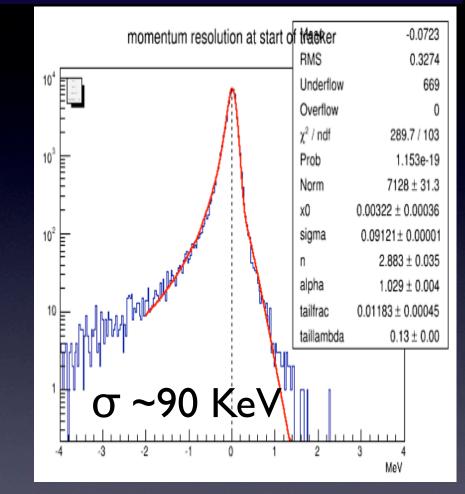
Active Targets for Stopped Muon CLFV Experiments


David Brown, MyeongJae Lee (LBNL) Argonne IF workshop CL group


Stopping Targets

- μ CLFV experiments require a stopping target
 - Material to slow, stop and (possibly) capture muons
 - Stopping rate ~ proportional to the mass
- Targets also degrade the muon decay particles (e⁻)
 - scattering and energy loss, ~ proportional to the mass
 - can limit the experimental resolution
- Can an active target recover (some) of the lost resolution?
- What features does an active target require?
- What technologies might make sense?
- What experiments would benefit?

David Brown, LBNL

Mu2e Momentum Resolution

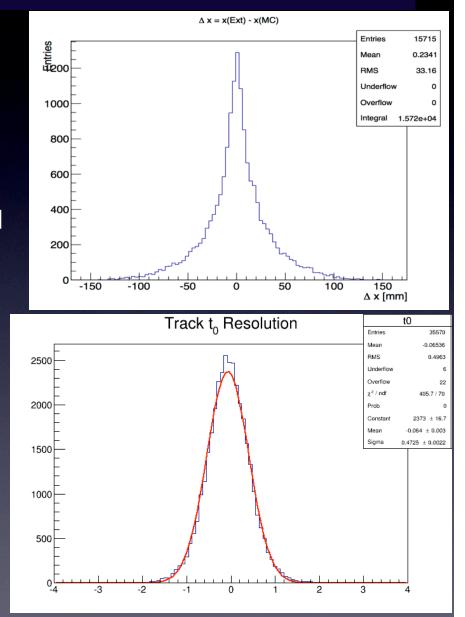
• Experimental resolution is dominated by material effects, not measurement error

David Brown, LBNL

(Potential) Active Target Features

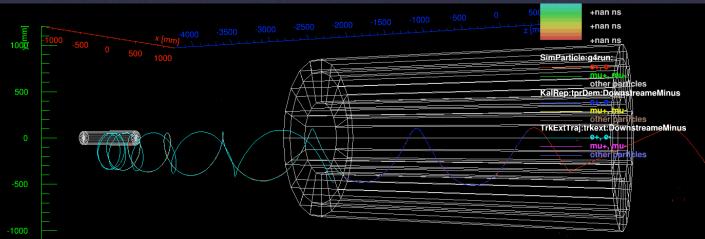
- Segmentation
 - Allow separation of signals
 - Creates ambiguity in extrapolation association
- Position information
 - Allows association with track extrapolation position
 - Can be used to improve track fit
- Time information
 - Allows association with track extrapolation time
 - Provides precise decay time
- Energy information
 - Distinguish signal from backgrounds
 - Can be used to recover straggling information (?)

Using an Active Target


- Assume primary detector is a tracker
 - Measures e⁻ time and trajectory
- Extrapolate track from tracker to target
 - Provides time and position 'footprint' at target(s)
 - footprint given by reconstruction resolution
 - multiple targets creates ambiguities
 - Extrapolation can add large errors (i.e. scattering)
- Associate target hits to track
 - Need an effective occupancy <1.0
- Refit track using target information
 - improved pointing, momentum, timing, ...

Backgrounds

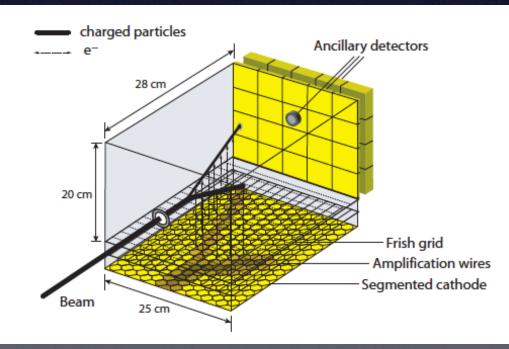
- Pulsed beam
 - Wait for beam-induced backgrounds to die off
 - Primary backgrounds from other muons decaying
- Continuous beam
 - beam-induced signals are primary background
 - lower instantaneous rate

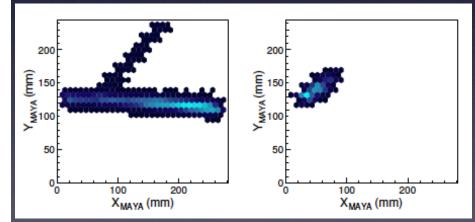

Mu2e (Pulsed) Association

- μ stoping rate = 4×10¹⁰ s⁻¹
- beam profile $\sigma \sim 40 \text{ mm}$
- 17 foils
- Flux (F) = 1.5×10^{6} mm⁻²s⁻¹
- Extrapolated resolution
 - $\sigma_{\text{space}} \sim 30 \text{ mm}$
 - $\sigma_{time} = 0.5 \times 10^{-9} s$
- Association Occupancy
 - $O = F \times \sigma_s^2 \times \sigma_t = \sim 0.5$
 - Not usable

A Usable Mu2e Active Target

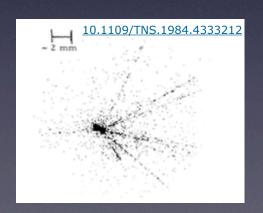
- Move target to middle of tracker
 - extrapolation distance ~ 0.5 meter (was ~3 meters)
 - constant field region: easier propagation
- Extrapolation spatial precision: $\sigma_s \sim 1 \text{ mm}$
 - Current Mu2e rate: $O < 10^{-3}$: useable
 - Project X rates: ~ few 10⁻³ : useable


8


Possible Active Target Technologies

- gaseous
 - TPC
- SciFi
 - MEG upgrade (?)
- Semiconductor (Si, Ge)
- Advantages/disadvantages to each

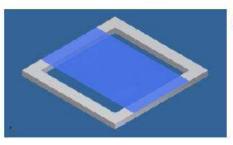
MAYA Target TPC


- Used in nuclear x-section measurement (NIM-A 573 (145) 2007)
- 3-D spatial resolution $\sigma_s \sim$ few mm
- Drift time ~ few μ sec
- Not practical at current/future CLFV experiment rates

SciFi

- Long history in nuclear, particle physics
- Readout is 2-dimensional: stereo layers required for space point
 - additional combinatorics in overlap
- Timing resolution can be very good
 - compensates for 2-D readout
- Readout outside target region
- Material choices
 - glass (SiO₂, ...)
 - organic (hydrocarbon)

MEG Upgrade Option



New Muon Target

MEG baseline solution: 140 μm thick target, 15° inclination angle

alternative concept: active target

- A µ⇒eγ decay event is identified by four observables: ΔE_γ, ΔE_e, Δt_{eγ}, ΔΘ_{eγ}
- The positron momentum and direction are measured by the spectrometer after that the particle has left the target and has flown towards the detector: an additional measured point on the target plane can help the positron track fit
- · If emerging positron is detected on the target:
 - improvements in both positron momentum and photon/positron angle resolutions
- If the muons ranging in the target are counted: (<< large signal compared to the positron, even if not time-correlated>>):
 - beam monitoring ("absolute normalization") A.Papa, MEG Review 2013

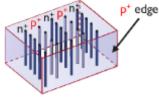
- single fibre array
- 250 µm fibres, double cladding
- short fibre length, SiPM readout
- \rightarrow challenge: to detect m.i.p. with expected energy deposit of ~30 keV
- "first" prototype: 8 fibres array

Malte Hildebrandt, Laboratory for Particle Physics

Semiconductor Detectors

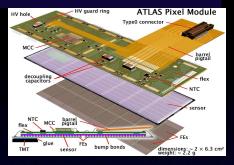
- '3D' readout (2-D pixels, thin wafers)
- Relatively pure materials
 - dopants, conductor + passivation layers may be contaminants
- Can be thinned (< 50 μ m)
 - Requires tension or support to hold thin wafers flat
- Readout electronics can be ~> 50% of mass
- Si is a natural choice for μ^+ , what about μ^- ?
 - Coresponding ^AAI have higher mass than natural ^ASi isotopes
 - Could be used in μ^{-} (capture)
- Ge could be a (higher-Z) alternative

Si Detector Energy Measurement


- Energy deposition in an active Si target might measure straggling
 - Must minimize inert material
 - Fully-depleted detector
 - Integrated readout
- However, Energy loss ≠ Energy deposition
 - hard bremsstrahlung would clearly escape
 - soft radiation might be (partially) captured
- R&D to compare Energy Loss vs Energy deposition is needed to see if this is viable

Possible Solid-State Detectors

- Hybrid Pixel detectors
 - ATLAS
 - thick sensors, + equally thick readout chip
- MAPS
 - STAR pixel detector
 - can be thinned to $\sim 40 \ \mu m$
 - charge collection by diffusion
- 3-D Si
 - i.e. arXiv:1101.4203
 - Vertical implants, horizontal drift, fully-depleted
 - Integrated readout possible


ionizing particle

oxide

p-epi

Conclusions

- Active targets can help measure muon rates
 - beam, capture, decay, ...
- Active targets can refine reconstruction in stopped muon experiments
 - extrapolated position and time resolution must be adequate to correctly associate hits
- Solid state technologies seem best suited
 - SciFi (multi-layer?), Semiconductor
- Energy deposition measurement could reduce resolution due to straggling
 - requires R&D on material effects, readout

David Brown, LBNL