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Executive summary

Charge: Review the status of the AlI/ML activities at the laboratory
and of the recommendations made at past meetings: Formulate a Aspirationl
strategy to respond to future Al/ML research calls, not necessarily just

fOI’ AI/ML CenteI’S. -Eam we going?
Vision What do we aspire to achieve?
Hope, Ambition

Framing: Al research is advancing rapidly; one primary area of
Fermilab strength is in intelligent sensing and real-time efficient Al Achievable Mission _@x::;m

Motivation, Purpose

What do we stand for?
Ethics, Principles, Beliefs

Vision: Accelerate scientific discovery at unprecedented data scales - ,
. . . . A iecti low are we going to progress’
while creating enabling technology for society Strategic Objectives Plan, Goal, Ssquencig

What do we have to do?
Mission: Efficient, robust, autonomous ML codesign & Tangile Actions & KPI's ‘@zgf;ﬁeﬁiﬂmeﬁames,
A. Catalyze inclusive, multidisciplinary Fast ML community around s Qe

grand challenges and benchmark tasks
B. Leverage relevant Fermilab core capabilities and strengths to

build tools to support the community Key performance indicators:

1. Sustainable funding sources for supporting

Strategy: community tools and users on 2 year timescale
A. ldentify and grow appropriate sustainable funding streams to 2. New and existing partnerships & collaborations
support community tools resulting in: research output; new projects on Al
B. Advance cutting-edge intelligent sensing, real-time Al research technology and research; technology transfer;
C. Develop industry/academic partnerships to support the core and community growth (users, downloads, etc.)
mission
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Outline

Framing - Al in the world, at the DOE
Dual Visions & Fast ML
Fast ML Mission

— 2 core elements of the strategy

Strategy & Key Performance Indicators

Charge —

We ask the PAC to review the status of
the Al/ML activities at the laboratory and
of the recommendations made at past
meetings: Formulate a strategy to
respond to future Al/ML calls, not
necessarily just for Al/ML centers.
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Al in the world and at the DOE

* Alis a big space: industry & academia

 The DOE Al strategy has gone through

multiple evolutions
— Recent excitement on foundation models
— ChatGPT came out in late 2022

* The leadership class HPC facilities are a key
resource (ORNL, ANL, LBNL)

— most recently — some effort to nucleate around
the Trillion Parameter Consortium (TPC)

* Where does HEP mission and Fermilab fit
into this picture?

report

ADVANCED RESEARCH

DIRECTIONS ON

Al FOR SCIENCE,
ENERGY, AND
SECURITY

Report on Summer 2022 Workshops

Jonathan Carter
Lawrence Berkeley National Laboratory

John Fedde
Sandia National Laboratories

Doug Kothe
Oak Ridge National Laboratory

Rob Neely
Lawrence Livermore National Laboratory

Stevens
Argonne National Laboratory

Al APPROACHES

New Al-Empowered Computing Paradigms, known
in this report as Al Approaches

models is opening the potential today for new
paradigms in computation, including the following Al
Approaches:

‘ . The scale of data and computation for training Al

01. Al and Surrogate Models for Scientific Computing

02. Al Foundation Models for Scientific Knowledge
Discovery, Integration, and Synthesis

03. Al for Advanced Property Inference and Inverse

@biiency Whkicicy |2 N -

04. Al-Based Design, Prediction, and Control of
Complex Engineered Systems

05. Al and Robotics for Autonomous Discovery

06. Al for Programming and Software Engineering
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https://www.anl.gov/sites/www/files/2023-06/AI4SESReport-2023-v6.pdf

Outline

Framing - Al in the world, at the DOE
Dual Visions & Fast ML
Fast ML Mission

Strategy & Key Performance Indicators

ey
ics, Pri 3
Values & :
s . . e ' \
k ¥iere are we going?
¥ Vision bt do we aspire to achieve?
A . | H¥le, Ambition
What do we do?
Who do we do it for?
Motivation, Purpose
Strategic Objecﬁves How are we going to progress?
Plan, Goals, Sequencing
What do we have to do?
How do we know?
Actions, Owners, Timeframes,
Resources, Outcomes

2= Fermilab

Achievable Mission

e Actions & KPI's
angible



Vision
We have consistently focused on:

Al for physics & physics for Al

e Develop Al capabilities to accelerate HEP science and contribute greater

science + industry Al ecosystem
e Build diverse, inclusive community; assemble multi-disciplinary
collaborations around cross-cutting HEP Al challenges

2= Fermilab



Vision
We have consistently focused on:

Al for physics & physics for Al

10/2372023 This space is massive -

In 2023 PAC talk, we summarized all the
exciting activities at Fermilab.

It continues to be our goal to support all
directions of Al research to advance HEP
science, e.g. see recent FNAL Al Jamboree

2= Fermilab


https://iml-wg.github.io/HEPML-LivingRevie
https://indico.fnal.gov/event/57211/contributions/254804/attachments/162942/215476/FNAL_PAC_AI_2023_v2.pdf

Vision

We have consistently focused on:

Al JAMBOREE

4

10/2372023 This space is massive -

In 2023 PAC talk, we summarized all the
exciting activities at Fermilab.

It continues to be our goal to support all
directions of Al research to advance HEP
science, e.g. see recent FNAL Al Jamboree

Al for physics & physics for Al

screenshot from last PAC Al talk

Al program in ~15 minutes

* Algorithms for HEP science

* Physics-inspired models and data
« Graph learning
» Generative models
» SBl/likelihood-free inference
* Accelerating theory

* Robust and generalizable learning
* Domain adaptation
* Anomaly detection
* Semi-/self-supervision

» Fast and efficient algorithms
« Multi-objective optimization
* Quantization/sparsity
« Knowledge distillation

* Operations and controls

* Computing hardware and infrastructure

* Real-time systems at the edge

* Real-time accelerator controls
» Telescope design and operations
* Quantum machine learning

» Resources for Al practitioners
« Efficient Al-in-production

and beyond
* Near-detector, low latency Al
+ On-sensor/detector Al

2= Fermilab


https://iml-wg.github.io/HEPML-LivingRevie
https://indico.fnal.gov/event/57211/contributions/254804/attachments/162942/215476/FNAL_PAC_AI_2023_v2.pdf

Vision
We have consistently focused on:

Al for physics & physics for Al

What is our unique value proposition in the Al space as it pertains to the PAC charge?

Accelerate scientific discovery at unprecedented data scales

This will be the focus of this talk.

2= Fermilab



Vision
We have consistently focused on:

Al for physics & physics for Al

What is our unique value proposition in the Al space as it pertains to the PAC charge?

Accelerate scientific discovery at unprecedented data scales

This will be the focus of this talk.

The strategy:
e is complementary to HPCs (e.g. edge vs cloud)
e |everages unique HEP strengths in cutting-edge sensing technology
e cuts across many scientific domains and industry

2= Fermilab



Fast ML for Science vision:
Accelerate scientific discovery at unprecedented data scales

€€

Scientific discoveries come from groundbreaking ideas and the
capability to validate those ideas by testing nature at new scales—
finer and more precise temporal and spatial resolution. This is
leading to an explosion of data that must be interpreted, and ML is
proving a powerful approach. The more efficiently we can test our
hypotheses, the faster we can achieve discovery. To fully unleash the
power of ML and accelerate discoveries, it is necessary to embed it

into our scientific process, into our instruments and detectors.
”»

Applications and Techni for Fast Machine Learning in Scien

Core ML Mission: Efficient, robust, autonomous ML codesign

2= Fermilab
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Outline

11

Framing - Al in the world, at the DOE
Dual Visions & Fast ML
Fast ML Mission

Strategy & Key Performance Indicators

Aspirational What do we stand for?
Values Ethics, Principles, Beliefs

Where are we going?
Vision What do we aspire to achieve?
Hope, Ambition

; s ]
. ‘ What do we do?
Mission Who do we do it for?
S | Motivation, Purpose
How are we going to progress?
Plan, Goals, Sequencing

What do we have to do?
How do we know?

Actions, Owners, Timeframes,
Resources, Outcomes

Strategic Objectives

e Actions & KPI's
angible
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Mission: Efficient, robust, autonomous ML codesign

Catalyze inclusive, multidisciplinary Fast ML community around grand challenges and
benchmark tasks

Leverage strength and scale of national laboratories to develop critical technologies
that support the community

2= Fermilab
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Grand challenges for HEP, examples

Optimal, continuous readout for DUNE for neutrino physics, multi-messenger astronomy, and

other rare measurements

Analyze all 40 MHz of LHC data for the full detector for new physics searches, Higgs

measurements, and more

Al-assisted, real-time operation of the Fermilab accelerator complex

13

Fermilab accelerator complex

Rate/10 ktonne (Hz)

39Ar

107 jm

10°

30 PB/yr for 100 ps ROI and single APA readout at Low E

neutrons I

30 PB/yr for 2.7 ms window and single APA readout at Low E

30 PB/yr for 5.4 ms window ing no ROI or compression)

Cosmics
Beam

Atmospherics

100 MeV  1GeV
Energy (MeV)

2= Fermilab


https://science.osti.gov/hep/Community-Resources

Data rate [B/s]

14

1014 T T T T T T "]
{* LHC sensor Fast ML for Science
benchmark tasks
1012 | _
it R
1010 | + _
EIC trigger +— Plasma control
— LHC trigger
DUNE readout
10°%- X-ray diffraction 7
Neuro
- +
108} Magnet quench Internet-of-things N
Beam control
—_—
104} 7]
102 | | | | | |
10° 1077  10°° 10® 10" 10! 108 10°

Computation time [s]

Grand challenges spark imaginations!
Benchmarks bring innovation
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Data rate [B/s]

1014 T T T T T T ]
T Lhc sensor Fast ML for Science . . )
benchmark tasks Grand challenges spark imaginations!
1012 i Benchmarks bring innovation
Qubit Readout
1010_ F 4+ |
EIC trigger +— Plasma control ] .
———LHC trigger Benefits to HEP: bring new resources to bear
2IELE itelele on HEP grand challenges (industry partnerships,
108 X-ray diffraction N ; ; ;
+ y computer science & engineering researchers)
Neuro
+
108} Magnet quench Internet-of-things n .
5 HEP-born technology brings transformative
eam control ; .
— technology to new material research, fusion
10%- N energy, neuroscience, or industry applications
and so on...
10-° 107 10° 10° 10"  10' 108 10°

Computation time [s]
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https://fastmachinelearning.org

The Fast ML community

*  Weekly meetings

 Annual workshop
— 1st edition at FNAL, now on 5th edition in 2024 (bidding for venue now)
— 1st ICCAD (computer aided design workshop) this year
* Projects supported from DOE and NSF coming from the community
— Example: NSF HDR A3D3 institute
— DOE funding from HEP, ASCR, NP, SBIR
* will discuss in more detail later
— Includes strong local university connections: IIT, Northwestern, Purdue, UC, UIC, UIUC,...
— Includes international collaborators
« Connected to wider communities
—  MLCommons FastML Lab
— Microelectronics initiatives Scncos o A ML forfindsmentst
— Industry collaborations and engagements A

2= Fermilab
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The Fast ML community

Fast ML for Science @ ICCAD, 1st ed. (screenshot)

16

Time . .
Duration Presentations
(PDT)
Welcome and introduction .
8:15 15' [Slides]
Javier Duarte, UCSD
Community Vision, Needs, and Progress
8:30 30 Y e [Slides]
Vladimir Loncar, MIT
Design Tools Perspective: Catapult + hls4ml for Inference at the Edge X
9:00 30' [Slides]
David Burnette, Siemens
Designing Hardware for Machine Learnin
9:30 30 B & [slides]
John Wawrzynek, UC Berkeley
10:00 30' Coffee
Design Tools Perspective: Mapping ML to the AMD RyzenAl Architecture
10:30 30 e 2 LA U [Slides]
Elliott Delaye, AMD
Fast ML in the NSF HDR Institute: A3D3 .
11:00 30' [Slides]
Shih-Chieh Hsu, UW
Real-time ML at the Linac Coherent Light Source .
11:30 30' [Slides]
Jana Thayer, SLAC
12:00 60' Lunch
Robust and Efficient Machine Learning for Mission-Critical Applications X
1:20 30' [Slides]
Bhavya Kailkhura, LLNL
Quantifying the Efficiency of High-Level Synthesis for Machine Learning
Inference
1:50 20' Caroline Johnson (UW), Scott Hauck, Shih-Chieh Hsu, Waiz Khan, Stephany Ayala-Cerna, Geoff [Paper] [Slides]
Jones, Anatoliy Martynyuk, Matthew Bavier, Oleh Kondratyuk, Trinh Nguyen, Jan Silva, Aidan
Short (UW)

Fast ML for Science, 4th ed. (screenshot)

Fast Machine Learning at the Large Hadron Collider experiments

Blackett Laboratory, Lecture Theatre 1, Imperial College London

Break

Blackett Laboratory, Foyer, Imperial College London

Fast Machine Learning at European XFEL

Blackett Laboratory, Lecture Theatre 1, Imperial College London

Bridging Al and biomedicine: Towards Al-driven scientific discoveries

Blackett Laboratory, Lecture Theatre 1, Imperial College London

Fast ine Learning for control

Blackett Laboratory, Lecture Theatre 1, Imperial College London

Fast Machine Learning for laser wakefield acceleration

Blackett Laboratory, Lecture Theatre 1, Imperial College London

Break

Blackett Laboratory, Foyer, Imperial College London

Fast ML for fusion simulation, optimization, and control

Blackett Laboratory, Lecture Theatre 1, Imperial College London

Machine Learning in Exoplanet Characterisation

Blackett Laboratory, Lecture Theatre 1, Imperial College London

09:45 - 10:30

10:30 - 11:00

Steve Aplin - @

11:00 - 11:45

Maria Brbic

11:45 - 12:30

Karin Rathsman @

09:00 - 09:45

Matt Streeter @
09:45 - 10:30

10:30 - 11:00

Jonathan Citrin - @

11:00 - 11:45

Ingo Waldmann et al. @

11:45 - 12:30
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Mission: objectives

e Catalyze inclusive, multidisciplinary Fast ML community around grand challenges and
benchmark tasks

Leverage strength and scale of national laboratories to develop critical technologies
that support the community

2= Fermilab
17



Efficient, robust, autonomous ML codesign

Core Fermilab Al capability, strong synergy with
microelectronics initiative

Synergies with different Al research
areas across Fermilab, focus area for
growth

18
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19

Efficient, robust, autonomous ML codesign

Efficient {algorithms, tools, hardware, workflows, collaborations} for ML codesign

Keras i

O pyTorch his 4 ml (|
@ ON NX T
Quantized
QKeras (Google) V|VADOA‘ Men.s*'g!:.,,
Brevitas (AMD)
HAWQ (UC Berkeley)
QONNX (Microsoft/AMD) G
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Efficient, robust, autonomous ML codesign

Efficient {algorithms, tools,

General techniques: sparsity, quantization
Physics informed techniques: distillation,
inductive bias

Efficient and Robust Jet Tagging at the LHC with
Knowledge Distillation

Ryan Liu Abhijith Gandrakota
University of California, Berkeley Fermi National Accelerator Laboratory
Berkeley, CA 94720 Batavia, IL 60510
Jennifer Ngadiuba Maria Spiropulu
Fermi National Accelerator Laboratory California Institute of Technology
Batavia, IL 60510 Pasadena, CA 91125

Jean-Roch Viimant
California Institute of Technology
Pasadena, CA 91125

QONNX: Representing Arbitrary-Precision
Quantized Neural Networks

AMD Adaptive and Embedded Computing Group (AECG) Labs
Dublin, Ireland Batavia, IL, USA

Cambridge, MA, USA Seattle, WA, USA La Jolla, CA, USA

Alessandro Pappalardo, Yaman Umuroglu, Michacla Blott Jovan Mitrevski', Ben Hawks, Nhan Tran
Fermi National Accelerator Laboratory

Vladimir Loncar* Sioni Summers Hendrik Borras
Massachusetts Institute of Technology ~ European Organization for Nuclear Research (CERN)  Heidelberg University

Cambridge, MA, USA Geneva, Switzerland Heidelberg, Germany
Jules Muhizi Matthew Trahms, Shih-Chieh Hsu, Scott Hauck Javier Duarte!
Harvard University University of Washington University of California San Diego

20

, workflows, collaborations} for ML

recent ICCAD workshop

Design Tools Perspective:
Catapult + HLS4 ML for
Inference at the Edge

Autoencoder from MLPerf Tiny (Collaboration with FastML)

D (072)

oim 12272) 5is 72) Fou

oy v
O 72684 Bis 72) Fol

Scaling throughput with more hardware resources

with AMD research,
20k downloads last month!

David Burnette
Director of Engineering — Catapult

Siemens EDA
SIEMENS

© Slmons 2023 Drv o | GO 1 CEAD Fasti.orSirc Wonanp - Onen Too arecive| 023182

Short Courses

— SC1 : Real-time machine learning on FPGAs (his4ml)

Course title: Real-time machine learning on FPGAs (hls4ml)
Course organizer: Ben Hawks, Fermilab

Date/time/venue: Saturday, November 4 — 8:00 am — 6:00 pm — 109 on Level 1

End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs

JAVIER CAMPOS, JOVAN MITREVSKI, and NHAN TRAN, Fermi National Accelerator Laboratory, USA
ZHEN DONG, AMIR GHOLAMI*, and MICHAEL W. MAHONEYT, University of California Berkeley,

USA
JAVIER DUARTE, University of California San Diego, USA

2= Fermilab



Efficient, robust, autononr

Efficient {algorithms, tools,

General techniques: sparsity, quantization
Physics informed techniques: distillation,

, workfloy

Key elements of community for science:

Open-source, not vendor-locked,
community-supported,
user-driven,
accessible and usable

21

Quantized Neural Networks

Alessandro Pappalardo, Yaman Umuroglu, Michacla Blott Jovan Mitrevski', Ben Hawks, Nhan Tran
AMD Adaptive and Embedded Computing Group (AECG) Labs Fermi National Accelerator Laboratory
Dublin, Treland Batavia, IL, USA
Viadimir Loncar Sioni Summers Hendrik Borras

Massachusetts Institute of Technology ~ European Organization for Nuclear Research (CERN) — Heidelberg University

Cambridge, MA, USA Geneva, Switzerland Heidelberg, Germany .

Jules Muhizi Matthew Trahms, Shih-Chieh Hsu, Scott Hauck Javier Duarte with AMD research ’

Harvard University University of Washington University of California San Diego
Cambridge, MA, USA Seattle, WA, USA La Jolla, CA, USA 20k dOWI"I|OadS |as‘t monthl

Convert with his4ml:

for offline
reading only

hls4ml

nT ch € Cex
config = hls4ml.utils.config_from_keras_model(model, granularity=

print(config)

NVe 1e moc

hls_model = hls4ml.converters.convert_from_keras_model(model,
hls_config=config,
output_dir=
fpga_part=

r he model i t \

hls4ml.utils.plot_model(hls_model, show_shapes=T , show_precision=T1

Inthe “hls4ml.converters.convert_from_keras_model" function:

* “hls_config:is the configuration for the conversion. We generated it using
“config_from_keras_model" for simplicity, but you can customize this as needed.
* “output_dir :is the directory where the HLS project will be created.
* “fpga_part : specifies the FPGA part. Adjust this based on your target FPGA.
Build the HLS Project:

Once the model is converted, you can compile it into HLS: bn Level 1

python ﬂ Copy code

hls_model.compile()

Run the HLS Simulation (Optional):
Before synthesizing for FPGA, you can run a C-simulation to check if the model works usA
correctly in HLS: celey,

python D Copy code

hls_model.build(csim=True B

-
After this, you'll have an HLS project in the specified “output_dir " that you can use with |I|ab
FPGA development tools to generate bitstreams for FPGA deployment.



Jindariani, Ngadiuba, Pedro, Tran,
Kijins , Tran, :
Kijins

e s E1TICIENT, rODUST, autonomous ML codesign

Trar
Cai,Herner,Yang,Wang,Flechas,Holzman,Pedro, Tran, arXiv:2301.04633

Efficient {algorithms, tools, hardware, workflows, collaborations} for ML codesign

Another example: system codesign for heterogeneous grid computing to accelerate ML workflows

To alleviate future HEP computing will be bottlenecks - enable more powerful algorithms on optimal hardware
* Coprocessors (GPUs, FPGAs, ASICs, ...) naturally accelerate ML workloads by orders of magnitude

Leverage industry hardware and tools - provide coprocessors as-a-service

* SONIC: Services for Optimized Network Inference on Coprocessors

CMS Preliminary

: Al Inference Cluster Server :
acquire() (CPU/GPU/IPU/etc) (Local/Remote) Portable Acceleration of CMS Production Workflow with
Send inputs Triton Inference Server Coprocessors as a Service

Client CPU
produce() Hl Load Balancer Model The CMS Collaboration
Client CPU Repository | :

e | S =) . MLG-23-001, first CMS ML Group paper!

iClient | Client CPU

T
¥
|

2= Fermilab
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https://cds.cern.ch/record/2872973/files/MLG-23-001-pas.pdf
https://link.springer.com/article/10.1007/s41781-019-0027-2
https://iopscience.iop.org/article/10.1088/2632-2153/abec21
https://ieeexplore.ieee.org/document/9307091
https://arxiv.org/abs/2009.04509
https://arxiv.org/abs/2301.04633

Efficient, robust, autonomous ML codesign

Example images of simulated

. . Bit level fault sensitivity analysis
galaxy morphologies with oo eyl y Y
different levels of telescope noise. e targglareto
High noise Low noise 6000}
8 v000] Linac unsupervised fault clustering
2000 - " R . .
2 MSB MSB-1 MSB-2 MSB-3 MSB-4 MSB-5 MSB-6 MSB-7 *| N ‘é / ‘ ( h
Weight Bit Index . |
/ K . 7/
— s . ‘ A ~ -'.. 2
8 ‘ Sy { ) J :
B _ CMS Preliminary 0467 fo-', 2023 (13.6 TeV) . RS .? Ty a <\ I
o ¥ i, “ L .
. R P
10 H > ;
| e T
mﬂ] — ~ ’ ‘ .
| B [ 7 "V 4 * .
’ . - B
L1 Prysics Rate AXOL1TL Score > 250 10 ) *
somsme = foumem AL
Anomaly detection algorithm ot e P N "
running online test bench on wf et Y NP :
", -is 10 5 6 s 1o 1
CMS Run 3 datal {1 et pmereen
00:00 01.00 @00 .00 04:00 0500 06.00
07-Jun
Time [UTC)

2= Fermilab
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Impact: recent examples

Leverage core capabilities to deploy ML at scale - algorithms
+ facilities, tools, software, multidisciplinary teams

e.g. large scale user facilities & advanced instrumentation,; advanced
computer science, visualization, & data; microelectronics

24
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Impact: recent examples

Leverage core capabilities to deploy ML at scale - algorithms
+ facilities, tools, software, multidisciplinary teams

e.g. large scale user facilities & advanced instrumentation,; advanced
computer science, visualization, & data; microelectronics

» First ever L1 trigger anomaly detection algorithm
deployed for LHC CMS Run 3

— Growth from community benchmarks and collaborations
built from community efforts, investment in his4dml
(FastML, AMD, Siemens)

« CMS MLG-23-001 demonstration of accelerated
ML workflows with SONIC; working with NVidia,
Graphcore, computing operations experts

« First edge Al deployed in Fermilab accelerator
complex; working with Intel/NU

24

https://cds.cern.ch/record/2876546

CMS Experiment at the LHC, CERN
' Data recorded: 2023-May-24 01:42:17.826112 GMT
=

Run/Event/ LS: 367883 / 374187302 / 159

Rameika, HEPAP Aug23
Real-time Edge Al for Distributed Systems (READS)

* Main Injector/Recycler Ring beam loss deblending:
* MI/RR share a tunnel and disentangling beam loss requires expertise and often to bring down T
oth beams when either one is causing losses. i 1 =
L NI N

2= Fermilab


https://science.osti.gov/-/media/hep/hepap/pdf/202308/HEPAP-RAR_Gina_Rameika_-HEPAP_202308.pdf

Impact: recent examples

Leverage core capabilities to deploy ML at scale - algorithms
+ facilities, tools, software, multidisciplinary teams

e.g. large scale user facilities & advanced instrumentation; advanced
computer science, visualization, & data; microelectronics

Toroidal Array
Poloidal Array

Low latency optical-based mode tracking with machine learning deployed T oA = feedback sensors
on FPGAs on a tokamak

Y. Wei,l:¥ R. F. Forelli,>*® C. Hansen,* J. P. Levesque,® N. Tran,>* J. C. Agar,® G. Di Guglielmo,®* M. E. . “

Mauel,* and G. A. Navratil® High speed cameras

Y Department of Applied Physics and Applied Math ics, Columbia University

2 Real-time Processing Systems Division, Fermi National Accel Lab y

3]qurlmtnl of Electrical and Comp Engineering, Lehigh University

;:Deparlmtnl of Electrical and Comp Engi) ing, North University Overhead view

Department of Mechanical Engineering and Mechanics, Drexel University . ofiokwmsk

) Microelectronics Division, Fermi National Accel Lab Y aerV: 2312.00128

L — T
Length [m]

A

(3)
g 120 kfps throughput, 17.6 ps latency

Enabling new capabilities for fusion experiments!

103

10 |
103 10°
! {5 Time [sec]
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https://arxiv.org/abs/2312.00128

Outline

* Framing - Al in the world, at the DOE
 Dual Missions & Fast ML
 Fast ML Vision

« Strategy & Key Performance Indicators

26

Aspirational What do we stand for?
Ethics, Principles, Beliefs
Values e
Where are we going?
What do we aspire to achieve?
Hope, Ambition
Achi bl .. What do we do?
cChievable Mission Who do we do it for?
Motivation, Purpose
o

AP
Strategic Objectives i _@e we going t0 progress?
lan, Goals, Sequencing
. What do we have to do?
Soscile Actions & KPI's How do we know?
& Tangible Actions, Owners, Timeframes,
Resources, Outcomes
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Fast ML ecosystem

Robust ML

(anomaly detection, domain
adaptation, uncertainty

Efficient ML quantification,..) Adaptive
hardware codesign | .
[his4ml] earning

Fast ML for Science: /

autonomous discovery at unprecedented data scales
Efficient, robust, autonomous ML system codesign

27
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Fast ML ecosystem

Robust ML

(anomaly detection, domain
adaptation, uncertainty

Effl Cie nt M L quantification,..)

hardware codesign

[his4ml]
Fast ML for Science:

autonomous discovery at unprecedented data scales
Efficient, robust, autonomous ML system codesign

A

Adaptive
learning

v

Scientific and industrial edge applications
HEP, NP, BES, FES, QIS, MMA, Neuro, ...
internet-of-things, industry 4.0, autonomous vehicles

27
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Fast ML ecosystem

Foundation Models,

Core ML research Digital Twins
)
£
OQ
& Robust ML
\0 (anomaly detection, domain
00 adaptation, uncertainty
HP quantification,..) .
\0& Efficient ML_ Adaptive
S hardware codesign | .
[his4ml] earning

Fast ML for Science: /

autonomous discovery at unprecedented data scales
Efficient, robust, autonomous ML system codesign

A

v

Scientific and industrial edge applications
HEP, NP, BES, FES, QIS, MMA, Neuro, ...
internet-of-things, industry 4.0, autonomous vehicles

27
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Fast ML ecosystem

Foundation Models,

Core ML r Digital Twins
@
.Q\O
O
&S Robust ML
\0 (anomaly detection, domain O
00 adaptatitt:_r;_, u::_certa)inty 3
S quantirication,..
\é h Eff'c'ent l\IIIL . Adaptive %
S ardware codesign learning Y
[his4ml] /
Fast ML for Science:
autonomous discovery at unprecedented data scales
Efficient, robust, autonomous ML system codesign Complementary
Fermilab Al research
focus areas
Fast ML
Community - _ _ -
strength Scientific and industrial edge applications

HEP, NP, BES, FES, QIS, MMA, Neuro, ...
internet-of-things, industry 4.0, autonomous vehi

2= Fermilab
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Project support and funding strategy

Support from DOE and community focused around research topics

- DOE HEP (Lab and University awards), ASCR, NP
- Additional sources: JTFI (UChicago/ANL), DPI (Ulllinois system), LDRD
- NSF include HDR institute (A3D3)

Strategic directions for support:

A.ldentify and develop sustainable funding streams to support broadening community tools
and techniques

B.Advance cutting-edge intelligent sensing, real-time Al research and hardware codesign

C.Develop strategic industry/academic partnerships to support the core mission

2= Fermilab
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Strategic growth

Fast ML for Science:
autonomous discovery at unprecedented data scales

EfflClen_t ML Robust ML Adap?lve
codesign learning

Strategic direction (A)

A\ 4

< Strategic direction (B,C)
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Strategic growth

Fast ML for Science:
autonomous discovery at unprecedented data scales

Efficient ML
codesign

Robust ML

Adaptive
learning

Strategic direction (A)

<@
<
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Strategic direction (B,C)

A\ 4

Grand challenges in HEP:

—_

Optimal, continuous readout for DUNE
for neutrino physics, multi-messenger
astronomy, and other rare measurements

Analyze all 40 MHz of LHC data for the
full detector for new physics searches,
Higgs measurements, and more

Al-assisted, real-time operation of the
Fermilab accelerator complex

And more in HEP and beyond!

2= Fermilab


https://science.osti.gov/hep/Community-Resources

Executive summary

Charge: Review the status of the AlI/ML activities at the laboratory
and of the recommendations made at past meetings: Formulate a
strategy to respond to future Al/ML research calls, not necessarily just
for AlI/ML centers.

Framing: Al research is advancing rapidly; one primary area of
Fermilab strength is in intelligent sensing and real-time efficient Al

Vision: Accelerate scientific discovery at unprecedented data scales
while creating enabling technology for society

Mission: Efficient, robust, autonomous ML codesign
A. Catalyze inclusive, multidisciplinary Fast ML community around
grand challenges and benchmark tasks
B. Leverage relevant Fermilab core capabilities and strengths to
build tools to support the community

Strategy:
A. ldentify and grow appropriate sustainable funding streams to
support community tools
B. Advance cutting-edge intelligent sensing, real-time Al research
C. Develop industry/academic partnerships to support the core
mission
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What do we stand for?
Ethics, Principles, Beliefs

ere are we going?
Vision What do we aspire to achieve?
Hope, Ambition
. at do we do?
Achievable Mission Who do we do it for?
Motivation, Purpose
Strategic Objectives ow are we going (o progress?
Plan, Goals, Sequencing
X What do we have to do?
Speclflc Actions & KPI's How do we know?
& Tangible Actions, Owners, Timeframes,
Resources, Outcomes

Key performance indicators:

Aspirational

1. Sustainable funding sources for supporting
community tools and users on 2 year timescale

2. New and existing partnerships & collaborations
resulting in: research output; new projects on Al
technology and research; technology transfer;
and community growth (users, downloads, etc.)
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Additional material
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Benchmarks bring innovation,
Grand challenges spark imaginations!
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|
10 10" 10®  10°
Computation time [s]

Benchmarks bring innovation,
Grand challenges spark imaginations!

Fermilab accelerator complex

—
300,000 devices monitored |}

nglﬂ

Particle accelerator controls
Talk by J. Mitrevski
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https://indico.cern.ch/event/1283970/contributions/5550643/attachments/2721973/4729145/READS%20FastML%20v3.pdf
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’% LHC sensor Fast ML for Science
benchmark tasks
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Benchmarks bring innovation,
Grand challenges spark imaginations!

1module

150 Anode Plane Assemblies
* 2560 wires/APA

* 384,000 channels total

* 12-bit ADC @2MHz,
© >1TB/sec!

Supernova detection and multi-messenger astronomy
Talk by M. Kahn
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https://indico.cern.ch/event/1283970/contributions/5550644/attachments/2722081/4729360/Fast_ML_DUNE%20SN_Pointing_Final.pdf
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Computation time [s]

Benchmarks bring innovation,
Grand challenges spark imaginations!

S {tQxy,2,6,0h

In-sensor mixed-signal
spiking convolutional NN
to extract {t,Q,x,y,2,0,0}

Full 40 MHz readout with smart pixel detectors

Talk by G. Di Guglielmo
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https://fastmachinelearning.org/iccad2023/program.html
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Computation time [s]

Benchmarks bring innovation,
Grand challenges spark imaginations!

New materials for quantum and energy
Talk by J. Agar
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https://indico.cern.ch/event/1283970/contributions/5550641/attachments/2721072/4727363/Agar_FastML_talk.pdf
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Benchmarks bring innovation,
Grand challenges spark imaginations!

QICK

lwwz 1] \. |
| - aDch |
: Filter aft |
I
: Control Hardware ! (2]
' [ QubitcControl | |
! |

____________________

© From Resonator

@ To Resonator

Qubit readout and control
Talk by J. Campos
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https://indico.cern.ch/event/1283970/contributions/5554333/attachments/2722515/4730432/FastML.pdf
https://github.com/openquantumhardware/qick
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Control

Design/Optimization

Magnetohydrodynamics Instabilities
Talk by R. Forelli
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https://docs.google.com/presentation/d/1NDXGV6ad_56qHEJC9EhplQHxFLFZ5msULCrftVAky2Y/edit#slide=id.g260e18753a1_0_183
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Magnetohydrodynamics Instabilities
Talk by R. Forelli
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https://docs.google.com/presentation/d/1NDXGV6ad_56qHEJC9EhplQHxFLFZ5msULCrftVAky2Y/edit#slide=id.g260e18753a1_0_183
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https://docs.google.com/presentation/d/1NDXGV6ad_56qHEJC9EhplQHxFLFZ5msULCrftVAky2Y/edit#slide=id.g260e18753a1_0_183
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https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf

