
Supported by
URF\R1\211661

A Common Neutrino
Event Format: NuHepMC

Luke Pickering, S. Gardiner, J. Isaacson
2024/01/18
NuSTEC CEWG

L. Pickering 2

State of the NuEvGen…tion

A Common Neutrino Event Format: NuHepMC

● A number of commonly used event generators:
○ GENIE, ACHILLES, NEUT, NuWro, MARLEY, GiBUU, …
○ Rich physics differences are a strength!

L. Pickering 3

State of the NuEvGen…tion

A Common Neutrino Event Format: NuHepMC

● A number of commonly used event generators:
○ GENIE, ACHILLES, NEUT, NuWro, MARLEY, GiBUU, …
○ Rich physics differences are a strength!

● Because we haven't agreed on common interfaces:
○ Comparing a cross-section measurement to a range of event generator predictions is an

expert-level task.
■ NUISANCE helps, but maintenance is a 100% unnecessary time sink.

L. Pickering 4

State of the NuEvGen…tion

A Common Neutrino Event Format: NuHepMC

● A number of commonly used event generators:
○ GENIE, ACHILLES, NEUT, NuWro, MARLEY, GiBUU, …
○ Rich physics differences are a strength!

● Because we haven't agreed on common interfaces:
○ Comparing a cross-section measurement to a range of event generator predictions is an

expert-level task.
■ NUISANCE helps, but maintenance is a 100% unnecessary time sink.

○ Entire experiment simulation software stacks are precariously balanced on top of
generator-specific APIs.

■ Adding a new bit of metadata to a GENIE event requires a new LArSoft release even if
nothing uses that metadata. ROOT object I/O is horrifically inextensible.

L. Pickering 5

State of the NuEvGen…tion

A Common Neutrino Event Format: NuHepMC

● A number of commonly used event generators:
○ GENIE, ACHILLES, NEUT, NuWro, MARLEY, GiBUU, …
○ Rich physics differences are a strength!

● Because we haven't agreed on common interfaces:
○ Comparing a cross-section measurement to a range of event generator predictions is an

expert-level task.
■ NUISANCE helps, but maintenance is a 100% unnecessary time sink.

○ Entire experiment simulation software stacks are precariously balanced on top of
generator-specific APIs.

■ Adding a new bit of metadata to a GENIE event requires a new LArSoft release even if
nothing uses that metadata. ROOT object I/O is horrifically inextensible.

● Neutrino interaction modelling and event generator development are very difficult
problems.

L. Pickering 6

State of the NuEvGen…tion

A Common Neutrino Event Format: NuHepMC

● A number of commonly used event generators:
○ GENIE, ACHILLES, NEUT, NuWro, MARLEY, GiBUU, …
○ Rich physics differences are a strength!

● Because we haven't agreed on common interfaces:
○ Comparing a cross-section measurement to a range of event generator predictions is an

expert-level task.
■ NUISANCE helps, but maintenance is a 100% unnecessary time sink.

○ Entire experiment simulation software stacks are precariously balanced on top of
generator-specific APIs.

■ Adding a new bit of metadata to a GENIE event requires a new LArSoft release even if
nothing uses that metadata. ROOT object I/O is horrifically inextensible.

● Neutrino interaction modelling and event generator development are very difficult
problems.
○ Turning an event vector into a measurement prediction shouldn't be.

L. Pickering 7

Goal #1

A Common Neutrino Event Format: NuHepMC

Perform the following steps:
● Make topological event selections
● Make kinematic event projections
● Scale the selected and projected

events to a cross section prediction
with specified units

on an event vector file without
knowing anything about how that file
was produced.

L. Pickering 8

Goal #2

A Common Neutrino Event Format: NuHepMC

Be able take a pre-simulated event vector and pass
it through an experimental simulation without using
any generator-specific code!

L. Pickering 9

Goal #2

A Common Neutrino Event Format: NuHepMC

Be able take a pre-simulated event vector and pass
it through an experimental simulation without using
any generator-specific code!

(caveat 1: At the analysis stage, systematic tools
may need to link back to the generator)

(caveat 2: Here we are not stipulating how those
events were generated: experiment flux/interaction
sim is currently necessarily generator specific)

L. Pickering 10

Some Axioms

A Common Neutrino Event Format: NuHepMC

● We can make multi-generator event processing simpler and more flexible
by agreeing on common interfaces without losing any functionality

L. Pickering 11

Some Axioms

A Common Neutrino Event Format: NuHepMC

● We can make multi-generator event processing simpler and more flexible
by agreeing on common interfaces without losing any functionality

● Such a common interface must not constrain any potential modelling
choices

L. Pickering 12

Some Axioms

A Common Neutrino Event Format: NuHepMC

● We can make multi-generator event processing simpler and more flexible
by agreeing on common interfaces without losing any functionality

● Such a common interface must not constrain any potential modelling
choices

● The simplest solution that needs the least maintenance is the best

L. Pickering 13

Some Axioms

A Common Neutrino Event Format: NuHepMC

● We can make multi-generator event processing simpler and more flexible
by agreeing on common interfaces without losing any functionality

● Such a common interface must not constrain any potential modelling
choices

● The simplest solution that needs the least maintenance is the best

● Event parsing is not the computational bottleneck in any
compute-intensive tasks (e.g. experiment simulation).

○ If a boatload of extensibility makes event reading off disk a little slower, this isn't a
problem

L. Pickering 14

NuHepMC In a Nutshell

A Common Neutrino Event Format: NuHepMC

L. Pickering 15

First: HepMC3 In a Nutshell

NuHepMC In a Nutshell

● Our proposal is based on the HepMC3 event format:
https://arxiv.org/pdf/1912.08005.pdf

● HepMC3:
○ Generic, extensible event graph library written and maintained by the collider community
○ An active user community
○ C++ & Python language bindings
○ Events can be read/written to ASCII, ROOT, Protobuf files on disk. User-extensible to other

on-disk formats
○ Authors are very open to contributions from active users:

■ e.g. I contributed the Protobuf format because I wanted a non-ROOT binary event
format that could be streamed between event generator and event processor

https://arxiv.org/pdf/1912.08005.pdf

L. Pickering 16

First: HepMC3 In a Nutshell

NuHepMC In a Nutshell

● Our proposal is based on the HepMC3 event format:
https://arxiv.org/pdf/1912.08005.pdf

● HepMC3:
○ Generic, extensible event graph library written and maintained by the collider community
○ An active user community
○ C++ & Python language bindings
○ Events can be read/written to ASCII, ROOT, Protobuf files on disk. User-extensible to other

on-disk formats
○ Authors are very open to contributions from active users:

■ e.g. I contributed the Protobuf format because I wanted a non-ROOT binary event
format that could be streamed between event generator and event processor

● NuHepMC is a set of conventions for event graphs and associated metadata, it
does not require any new code beyond HepMC3.

https://arxiv.org/pdf/1912.08005.pdf

L. Pickering 17

First: HepMC3 In a Nutshell

NuHepMC In a Nutshell

https://indico.cern.ch/event/351898/contributions/827536/attachments/696475/956357/HepMC3Status.pdf

https://indico.cern.ch/event/351898/contributions/827536/attachments/696475/956357/HepMC3Status.pdf

L. Pickering 18

● HepMC3 Primitives:
○ GenRunInfo
○ Attribute
○ Event
○ Vertex
○ Particle

HepMC3 Vectors

NuHepMC In a Nutshell

L. Pickering 19

● HepMC3 Primitives:
○ GenRunInfo
○ Attribute
○ Event
○ Vertex
○ Particle

● GenRunInfo: once-per-vector metadata
about the generator run that produced
the contained events.

HepMC3 Vectors

NuHepMC In a Nutshell

L. Pickering 20

● HepMC3 Primitives:
○ GenRunInfo
○ Attribute
○ Event
○ Vertex
○ Particle

● GenRunInfo: once-per-vector metadata
about the generator run that produced
the contained events.

● Attribute: Extensible Key-Value
metadata that can be attached to all
other primitive types:

○ Facilities for typed attributes:
int/double/string, vectors thereof etc…

HepMC3 Vectors

NuHepMC In a Nutshell

L. Pickering 21

● HepMC3 Primitives:
○ GenRunInfo
○ Attribute
○ Event
○ Vertex
○ Particle

● GenRunInfo: once-per-vector metadata
about the generator run that produced
the contained events.

● Attribute: Extensible Key-Value
metadata and be attached to all other
types:

○ Facilities for typed attributes:
int/double/string, vectors thereof etc…

HepMC Vectors

NuHepMC In a Nutshell

Critical: Adding/removing attributes or even new types of attribute
doesn't change the binary readability of an event vector!

e.g. Reading in event vectors produced by different versions of NEUT,
doesn't require any changes to user code.

This might seem like a minor detail, but it dramatically lowers the
technical barrier and maintenance load to producing and using event
vectors.

1. I know that I can read a vector produced 10 years ago and one produced
today with the same code.

2. I know that I can read a vector produced by Josh without checking the
exact version of ACHILLES and building the same one

3. I can reasonably expect that my analysis will run on output from newer
versions of a generator without modification

The coupling between user code and exact generator versions
becomes very weak and this is surprisingly powerful.

L. Pickering 22

● Events contain metadata attributes
and an event graph of vertices and
particles

HepMC3 Event Graphs

NuHepMC In a Nutshell

L. Pickering 23

● Events contain metadata attributes
and an event graph of vertices and
particles

● Vertices have a position, a status code
and incoming and outgoing particles
(and optional metadata)

HepMC3 Event Graphs

NuHepMC In a Nutshell

L. Pickering 24

● Events contain metadata attributes
and an event graph of vertices and
particles

● Vertices have a position, a status code
and incoming and outgoing particles
(and optional metadata)

● Particles have a status code, a PID,
and a four-momenta (and optional
metadata)

HepMC3 Event Graphs

NuHepMC In a Nutshell

L. Pickering 25

● Events contain metadata attributes
and an event graph of vertices and
particles

● Vertices have a position, a status code
and incoming and outgoing particles
(and optional metadata)

● Particles have a status code, a PID,
and a four-momenta (and optional
metadata)

HepMC3 Event Graphs

NuHepMC In a Nutshell

L. Pickering 26

● Events contain metadata attributes
and an event graph of vertices and
particles

● Vertices have a position, a status code
and incoming and outgoing particles
(and optional metadata)

● Particles have a status code, a PID,
and a four-momenta (and optional
metadata)

HepMC3 itself places minimal structural
constraints on any of these.

HepMC3 Event Graphs

NuHepMC In a Nutshell

L. Pickering 27

● Full working spec on Arxiv: https://arxiv.org/pdf/2310.13211.pdf
● More 'living' version on Github: https://github.com/NuHepMC/Spec
● Individual specifications take the form:

<Component>.<Category>.<Index>
○ <Component>:

■ G: GenRunInfo
■ E: Event
■ V: Vertex
■ P: Particle

○ <Category>:
■ R: Requirement – Must be implemented by all
■ C: Convention – Recommend specifications
■ S: Suggestion – Optional details

NuHepMC in a Nutshell

NuHepMC In a Nutshell

https://arxiv.org/pdf/2310.13211.pdf
https://github.com/NuHepMC/Spec

L. Pickering 28

● Full working spec on Arxiv: https://arxiv.org/pdf/2310.13211.pdf
● Individual specifications take the form:

<Component>.<Category>.<Index>
● Where:

○ <Component>:
■ G: GenRunInfo
■ E: Event
■ V: Vertex
■ P: Particle

○ <Category>:
■ R: Requirement – Must be implemented by all
■ C: Convention – Recommend specifications
■ S: Suggestion – Optional details

NuHepMC in a Nutshell

NuHepMC In a Nutshell

https://arxiv.org/pdf/2310.13211.pdf

L. Pickering 29

Some Important Technical Details

A Common Neutrino Event Format: NuHepMC

L. Pickering 30

Conventions

Some Important Technical Details

L. Pickering 31

Conventions

Some Important Technical Details

L. Pickering 32

Conventions

Some Important Technical Details

C++ uses https://github.com/NuHepMC/cpputils Python

https://github.com/NuHepMC/cpputils

L. Pickering 33

Conventions

Some Important Technical Details

Python

Example code is just an advert for how you can use minimally dependent tools to dump
information out of a NuHepMC vector without knowing anything about the generator
that produced it! It might not be the best way to achieve the results in an actual
analysis.

pyHepMC3 can be installed with pip!

C++ uses https://github.com/NuHepMC/cpputils

https://github.com/NuHepMC/cpputils

L. Pickering 34

Process Metadata

Some Important Technical Details

L. Pickering 35

Process Metadata

Some Important Technical Details

This is both an important specific detail and an example of our general approach to not
violating our axiom:

● Such a common interface must not constrain any potential modelling choices

We cannot specify hard scatter channels in the spec without constraining the physics
describable by the format. Instead we require that implementations communicate their
choices in a pre-specified and programmatically accessible manner.

L. Pickering 36

Process Metadata

Some Important Technical Details

This is both an important specific detail and an example of our general approach to not
violating our axiom:

● Such a common interface must not constrain any potential modelling choices

We cannot specify hard scatter channels in the spec without constraining the physics
describable by the format. Instead we require that implementations communicate their
choices in a pre-specified and programmatically accessible manner.

● Current implementations usually hard code definitions in the source code, which
are then not extractable from a given vector file.

● What does NEUT mode 41 mean? Read the source code!
● Trivial to define new process ids for BSM models or new processes or

sub-processes.

Where appropriate, we also provide conventions that can be adopted that do provide
additional standardisation.

L. Pickering 37

Process Metadata

Some Important Technical Details

● The python interface can be a little
clunky. But users can and will improve it!

● There is also a scikit-hep interface that
has some different pros/cons

L. Pickering 38

Process Metadata

Some Important Technical Details

Interpreting process IDs generally and
correctly will always need
generator-specific code:

● But with NuHepMC, we don't need
to link to generator binaries, it can
all be implemented in the analysis
code in a compartmentalised way
and can access all the information
about a process ID from the
GenRunInfo metadata

L. Pickering 39

Process Metadata

Some Important Technical Details

Interpreting process IDs generally and
correctly will always need
generator-specific code:

● But with NuHepMC, we don't need
to link to generator binaries, it can
all be implemented in the analysis
code in a compartmentalised way
and can access all the information
about a process ID from the
GenRunInfo metadata

L. Pickering 40

Process Metadata

Some Important Technical Details

Interpreting process IDs generally and
correctly will always need
generator-specific code:

● But with NuHepMC, we don't need
to link to generator binaries, it can
all be implemented in the analysis
code in a compartmentalised way
and can access all the information
about a process ID from the
GenRunInfo metadata

L. Pickering 41

Process Metadata

Some Important Technical Details

Interpreting process IDs generally and
correctly will always need
generator-specific code:

● But with NuHepMC, we don't need
to link to generator binaries, it can
all be implemented in the analysis
code in a compartmentalised way
and can access all the information
about a process ID from the
GenRunInfo metadata

If implementations signal the use of E.C.1
and this breakdown in granular enough
for a given analysis, then it can be fully
generator agnostic again!

L. Pickering 42

Status Codes

Some Important Technical Details

● The general approach of requiring that implementations signal the definitions of
their hard scatter process codes in a specified metadata format is repeated for
Vertex status codes and Particle status codes.

L. Pickering 43

Status Codes

Some Important Technical Details

● The general approach of requiring that implementations signal the definitions of
their hard scatter process codes in a specified metadata format is repeated for
Vertex status codes and Particle status codes.

L. Pickering 44

Status Codes

Some Important Technical Details

● The general approach of requiring that implementations signal the definitions of
their hard scatter process codes in a specified metadata format is repeated for
Vertex status codes and Particle status codes.

L. Pickering 45

Citations

Some Important Technical Details

L. Pickering 46

Citations

Some Important Technical Details

L. Pickering 47

Important Details: Citations

Some Important Technical Details

L. Pickering 48

Scaling to a Cross Section

Some Important Technical Details

● When you run a generator for a comparison to
an xs measurement, you generally ask for a
number of events from a given model
configuration, with a given flux *shape*.

● Measurements are usually published as a
flux-averaged cross-section

● You can think of this as the expected
distribution of the measurement per neutrino
per target*.

L. Pickering 49

Scaling to a Cross Section

Some Important Technical Details

● When you run a generator for a comparison to
an xs measurement, you generally ask for a
number of events from a given model
configuration, with a given flux *shape*.

● Measurements are usually published as a
flux-averaged cross-section

● You can think of this as the expected
distribution of the measurement per neutrino
per target*.

○ * Often per target Nucleon†

L. Pickering 50

Scaling to a Cross Section

Some Important Technical Details

● When you run a generator for a comparison to
an xs measurement, you generally ask for a
number of events from a given model
configuration, with a given flux *shape*.

● Measurements are usually published as a
flux-averaged cross-section

● You can think of this as the expected
distribution of the measurement per neutrino
per target*.

○ * Often per target Nucleon†

○ † there are also a number of different
conventions within this convention…

L. Pickering 51

Scaling to a Cross Section

Some Important Technical Details

● Historically each generator have provided the
scale factor to go from a requested event rate
to the Flux-Averaged Total Cross Section
prediction differently:

○ One of the *main* uses of NUISANCE within
the community is handling these differences
'transparently' for users

○ A significant amount of NUISANCE
maintenance time (and bugs) have been in this
process.

○ Not all generators know this scale factor at the
start of a run, some calculate it as they go.

L. Pickering 52

Scaling to a Cross Section

Some Important Technical Details

● Historically each generator have provided the
scale factor to go from a requested event rate
to the Flux-Averaged Total Cross Section
prediction differently:

○ One of the *main* uses of NUISANCE within
the community is handling these differences
'transparently' for users

○ A significant amount of NUISANCE
maintenance time (and bugs) have been in this
process.

○ Not all generators know this scale factor at the
start of a run, some calculate it as they go.

MARLEY

L. Pickering 53

Scaling to a Cross Section

Some Important Technical Details

● Historically each generator have provided the
scale factor to go from a requested event rate
to the Flux-Averaged Total Cross Section
prediction differently:

○ One of the *main* uses of NUISANCE within
the community is handling these differences
'transparently' for users

○ A significant amount of NUISANCE
maintenance time (and bugs) have been in this
process.

○ Not all generators know this scale factor at the
start of a run, some calculate it as they go.

● One of my main goals with this whole NuHepMC project was
the offload the production of this 'scale factor' to the
generator/event format.

● If we cannot get this right, then I think we have failed to
provide a useful common format.

L. Pickering 54

Scaling to a Cross Section

Some Important Technical Details

● This is so central, that we devote an entire section to the mathematical demonstration
of the importance of the FATX and a general derivation of it for an arbitrary flux and
target complexity

L. Pickering 55

● Some generators know the FATX for a given configuration before they start spitting
out events (GENIE, NEUT, NuWro*).
○ It is calculated for simple single-target, single-species measurements like:

Where A(E𝜈) is the flux distribution, and σ is the total cross-section as a function of the
neutrino energy for the given model configuration.

Scaling to a Cross Section

Some Important Technical Details

*NuWro uses a weighted test run before writing out events to pre-estimate the FATX

L. Pickering 56

Scaling to a Cross Section

Some Important Technical Details

● Other generators (ACHILLES) calculate it as they go, this obviates the need for
'splines' (GENIE lingo for total cross section tables) as an explicit input but produces
weighted output events that require a little more care at analysis time.

L. Pickering 57

Scaling to a Cross Section

Some Important Technical Details

● Other generators (ACHILLES) calculate it as they go, this obviates the need for
'splines' (GENIE lingo for total cross section tables) as an explicit input, but produces
weighted, or non-equiprobable output events that require a little more care at analysis
time.

L. Pickering 58

Cross Section Units

Some Important Technical Details

L. Pickering 59

Cross Section Units

Some Important Technical Details

L. Pickering 60

Cross Section Units

Some Important Technical Details

This is another good example of our general approach to standardising existing
conventions.

1. Specify free-form string attributes that generators can put whatever they want in.
Fully extensible.

2. Reserve the meaning for some values that we expect to cover most current uses so that
automatic processing of the vast majority of generator outputs can be achieved without
restricting the evolution of community conventions and best practices

-> If a generator needs to output something non-standard, that's allowed, but
analyses will necessarily have to adapt to those differences.

-> Such unforeseen cases can be implemented in community tools rapidly, without
requiring a new release of this specification.

L. Pickering 61

Scaling to a Cross Section

Some Important Technical Details

● The details here are involved and I'm sure I've gone into them too much already…

● The upshot is:

L. Pickering 62

Scaling to a Cross Section

Some Important Technical Details

● The details here are involved and I'm sure I've gone into them too much already…

● The upshot is:
○ We think that it is critically important that we require enough metadata to go from

a NuHepMC file of unknown provenance, to a total cross-section prediction
without any generator specific code

L. Pickering 63

Scaling to a Cross Section

Some Important Technical Details

● The details here are involved and I'm sure I've gone into them too much already…

● The upshot is:
○ We think that it is critically important that we require enough metadata to go from

a NuHepMC file of unknown provenance, to a total cross-section prediction
without any generator specific code

○ We think we have done that generally enough, but want eyes on 👀!

L. Pickering 64

Scaling to a Cross Section

Some Important Technical Details

● The details here are involved and I'm sure I've gone into them too much already…

● The upshot is:
○ We think that it is critically important that we require enough metadata to go from

a NuHepMC file of unknown provenance, to a total cross-section prediction
without any generator specific code

○ We think we have done that generally enough, but want eyes on 👀!

We will provide tools that deal with the details of how this overall scale factor is calculated
● much like NUISANCE currently does, but we shouldn't require users to use a monolithic framework

to calculate such a fundamental quantity for interaction cross-section predictions.

L. Pickering 65

Scaling to a CrossSection

Some Important Technical Details

L. Pickering 66

Scaling to a CrossSection

A Common Neutrino Event Format: NuHepMC

L. Pickering 67

Scaling to a CrossSection

Some Important Technical Details

L. Pickering 68

We have tried to think of, implement, and test many bits of important
metadata that I will not go into the details of here.
Some important things that I haven't gone through:
● ASCII/Protobuf formats are message based -> Can be streamed
● Specification is probe-agnostic: We hope that it will also be useful for e-,

nucleon-, and pion-scattering analyses
● Non-standard PDGs can be defined, with space reserved for specifying

information required by GEANT4 for propagation and decay.
● Beam energy distribution information:

○ Simple flux histograms
○ Ideas for including the full beam simulation provenance directly in the HepMC3 event.

● Exposure information (NEvents, or POT)
● Lab position and time

Other Bits and Bobs…

Some Important Technical Details

L. Pickering 69

Palate Cleanser

A Common Neutrino Event Format: NuHepMC

L. Pickering 70

Example Event Graphs

Palate Cleanser

L. Pickering 71

Non-Comprehensive I/O Stats

Palate Cleanser

L. Pickering 72

Closing Thoughts

A Common Neutrino Event Format: NuHepMC

L. Pickering 73

● Written a working specification
● Added compliant native output modules or vector converter tools for a

number of in-use generators:
○ ACHILLES: native
○ NEUT: converter https://github.com/neut-devel/neutvect-converter
○ GENIE: native, unofficial https://github.com/sjgardiner/Generator/tree/hepmc3
○ NuWro: converter https://github.com/NuHepMC/nuwro2hepmc3

● Beginning development of community C++ tools and C++/python examples
repository:

○ https://github.com/NuHepMC/cpputils
○ https://github.com/NuHepMC/Examples

● Used for first 'end to end' analysis for the NuSTEC FSI white paper
○ Analysis can be run with the only link time dependency being a compiler (+ROOT for plots)

Accomplished

Closing Thoughts

https://github.com/neut-devel/neutvect-converter
https://github.com/sjgardiner/Generator/tree/hepmc3
https://github.com/NuHepMC/nuwro2hepmc3
https://github.com/NuHepMC/cpputils
https://github.com/NuHepMC/Examples

L. Pickering 74

● Written a working specification
● Added compliant native output modules or vector converter tools for a

number of in-use generators:
○ ACHILLES: native
○ NEUT: converter https://github.com/neut-devel/neutvect-converter
○ GENIE: native, unofficial https://github.com/sjgardiner/Generator/tree/hepmc3
○ NuWro: converter https://github.com/NuHepMC/nuwro2hepmc3

● Beginning development of community C++ tools and C++/python examples
repository:

○ https://github.com/NuHepMC/tools
○ https://github.com/NuHepMC/Examples

● Used for first 'end to end' analysis for the NuSTEC FSI white paper
○ Analysis can be run with the only link time dependency being a compiler (+ROOT for plots)

Accomplished

Closing Thoughts

https://github.com/neut-devel/neutvect-converter
https://github.com/sjgardiner/Generator/tree/hepmc3
https://github.com/NuHepMC/nuwro2hepmc3
https://github.com/NuHepMC/tools
https://github.com/NuHepMC/Examples

L. Pickering 75

● NUISANCE can already read in
NuHepMC events for data comparison

Watch this space for:

● Fully automatic measurement
comparison tools based on NuHepMC

○ Leveraging NUISANCE & HEPData

● Standalone 'theorist'
Geometry/Neutrino Ray Tracer tools
with a standardised API

● Bibliography generation tools

Other Related Projects

Closing Thoughts

L. Pickering 76

Why a Common interface?
● Reduce maintenance -> More time for writing community tooling
● Lower technical barrier -> More people, more productivity, less bugs
● Improved interoperability -> More flexible generator predictions

Why!?

Closing Thoughts

L. Pickering 77

Why a Common interface?
● Reduce maintenance -> More time for writing community tooling
● Lower technical barrier -> More people, more productivity, less bugs
● Improved interoperability -> More flexible generator predictions

Why NuHepMC?
● Based on Collider tools -> Spread the maintenance, existing community
● Active core development team
● Flexible on-disk formats, with flexibility for additional ones
● Designed with extensibility and data preservation in mind
● New opportunities for interoperability with Collider tools!

Why!?

Closing Thoughts

L. Pickering 78

● We need people reading, using and critiquing this specification:
○ Which use cases doesn't it simplify. Can they be further simplified?
○ Seeing what tools need to be written for non-expert users

What We Need

Closing Thoughts

L. Pickering 79

● We need people reading, using and critiquing this specification:
○ Which use cases doesn't it simplify. Can they be further simplified?
○ Seeing what tools need to be written for non-expert users

● We need political will to put in the effort to build next-generation experiment
stacks on common extensible tools:

○ It doesn't have to be this one, but a relatively small amount of work now will make multiple
generations of students and PDRAs lives easier.

○ This is the experience communicated from the collider folks

What We Need

Closing Thoughts

L. Pickering 80

● We need people reading, using and critiquing this specification:
○ Which use cases doesn't it simplify. Can they be further simplified?
○ Seeing what tools need to be written for non-expert users

● We need political will to put in the effort to build next-generation experiment
stacks on common extensible tools:

○ It doesn't have to be this one, but a relatively small amount of work now will make multiple
generations of students and PDRAs lives easier.

○ This is the experience communicated from the collider folks

● We need capable implementers to use the spec their experiment's tools
○ N.B. G4 has a HepMC3 interface that should be able to read NuHepMC events 'for free'
○ LArSoft
○ HK – Though some recent work on WCSim to read HepMC3 events
○ Make sure that sufficient NuHepMC 'passthrough' information is available at analysis stage

What We Need

Closing Thoughts

L. Pickering 81

Thanks for Listening!

L. Pickering 82

gevgen --seed 13371337 --tune $GENIE_XSEC_TUNE --cross-sections $GENIE_XSEC_FILE -n 100000 -t 1000180400 -o test.root,ghep,test.hepmc3,hepmc -e 0.1,10 -p 14

 NuHepMC-config --build genie_read.cxx -I$(genie-config --topsrcdir) -lz -llzma -lbz2 $(genie-config --libs) $(root-config --cflags --glibs) -llog4cpp -lxml2 -L${LHAPDF_LIB}
-lLHAPDF -lMathMore -lEGPythia6 -lGeom

