PDE is calculated by fitting a Poisson distribution to the photoelectron spectrum

n = Poisson fitted mean number of photoelectrons

relative PDE in LN₂ (Broadcom, DUNE FBK, DUNE HPK)

Number of incidence photons is determined from the measured photocurrent at the selected wavelength from a NIST calibrated photodiode

of 405 nm photons =
$$\frac{0.65 fA}{(1 kHz)(0.19\frac{A}{W})(1.6x10^{-19}J/eV)(3.06 eV)}$$
 (0.86) = $\frac{6.01 \text{ photons}}{(0.86)}$

PDE in LN₂ (Broadcom, DUNE FBK, DUNE HPK)

PDE (Broadcom, 405 nm, 5V, LN_2) = $\frac{\# photoelectrons out}{\# photons in} = \frac{3.8}{6.01} = 0.63$

PDE @ 405 nm 5V OV in LN2	Poisson fitted n-pe	absolute PDE (±7%)	Spec. RT
DUNE HPK 75 µm	3.15	0.52	~0.47
DUNE FBK 50 µm	2.93	0.48	n/c
Broadcom 40 µm	3.8	0.63	~0.62

Broadcom: PDE spectral response – use white light source and calibrate against NIST photodiode

$$PDE_{\lambda} = [spectral \, reponse]_{\lambda} \times \frac{[PDE_{pulse}]_{405nm}}{[spectral \, reponse]_{405nm}}$$

noted: CT & AP - photoelectron effect, wavelength independent

PDE (QE) = photon effect, depends on wavelength

Broadcom: PDE spectral response – use white light source and calibrate against NIST photodiode

$$PDE_{\lambda} = [spectral \, reponse]_{\lambda} \times \frac{[PDE_{pulse}]_{405nm}}{[spectral \, reponse]_{405nm}}$$

noted: CT & AP - photoelectron effect, wavelength independent

PDE (QE) = photon effect, depends on wavelength

Broadcom: PDE spectral response – use white light source and calibrate against NIST photodiode

$$PDE_{\lambda} = [spectral \, reponse]_{\lambda} \times \frac{[PDE_{pulse}]_{405nm}}{[spectral \, reponse]_{405nm}}$$

noted: CT & AP - photoelectron effect, wavelength independent

PDE (QE) = photon effect, depends on wavelength

Spectral PDE response generally agrees with Broadcom (peak at ~410 nm) – but has a slight blue shift behavior in LN_2

DUNE HPK: PDE spectral response – use white light source and calibrate against NIST photodiode

$$PDE_{\lambda} = [spectral \, reponse]_{\lambda} \times \frac{[PDE_{pulse}]_{405nm}}{[spectral \, reponse]_{405nm}}$$

noted: CT & AP - photoelectron effect, wavelength independent

PDE (QE) = photon effect, depends on wavelength

Spectral PDE response generally agrees with HPK (peak at \sim 460 nm) – also has a slight blue shift behavior in LN₂

DUNE FBK: PDE spectral response – use white light source and calibrate against NIST photodiode

$$PDE_{\lambda} = [spectral \, reponse]_{\lambda} \times \frac{[PDE_{pulse}]_{405nm}}{[spectral \, reponse]_{405nm}}$$

noted: CT & AP – photoelectron effect, wavelength independent

PDE (QE) = photon effect, depends on wavelength

N/C

Can't compare to FBK data (peak at ~400 nm) – may have a very slight blue shift behavior in LN_2