DUNE FD2 Photon Detection System Module-1 Run at ColdBox

PNS PDS Meeting

Wei

Simulated 4.7 MeV e⁻

- angle to the detector (and light yield)
- Focus on γ source (n-capture) right on top of any of the 4 XAs on cathode

ColdBox has small drift volume: a small change in source position makes huge difference in solid

4.7MeV γ in a LAr Bath (200m x 200m x 200m): **Pair production**

e^+e^- total KE: 3.68MeV (fixed)

event 5									
Marley eve	ents: ass	sert in	fo f <mark>r</mark>	om file	name				
vertex @: (0.0, 0.0, 0.0) [mm]									
pdg	pdg name trkId parId acId					selfDepo	allDepo		
1					[MeV]	[MeV]	[MeV]		
22	gamma	0	-1	 0	4.70	0.00	4.70		
11	e-	1	Θ	Θ	1.60	1.60	1.60		
-11	e+	2	Θ	Θ	2.08	2.08	3.10		
22	gamma	3	2	Θ	0.51	0.10	0.51		
22	gamma	4	2	Θ	0.51	0.08	0.51		
11	e-	5	4	Θ	0.01	0.01	0.01		
11	e-	6	4	Θ	0.26	0.26	0.26		
11	e-	7	4	Θ	0.09	0.09	0.09		
11	e-	8	4	Θ	0.05	0.05	0.05		
11	e-	9	4	Θ	0.03	0.03	0.03		

1.5 1.0 0.5 y [m] 0.0 -0.5 -1.0 -1.0 **Very localized deposits**

If happens on a XA, it should see all 4.7 MeV energy deposit

4.7MeV γ in a LAr Bath (200m x 200m x 200m): Pair production - another example

e^+e^- total KE: 3.68MeV (fixed)

event 3 Marley eve vertex @:	nts: as (0.0, 0	sert in .0, 0.0)	fo fro) [mm]	om file	name			
pdg	name	trkId p	arId	acId	KE [MeV]	selfDepo [MeV]	allDepo [MeV]	
22	gamma	Θ	-1	Θ	4.70	0.00	4.70	
11	e-	1	Θ	Θ	0.61	0.61	0.61	
-11	e+	2	Θ	Θ	3.07	3.07	4.09	
22	gamma	3	2	Θ	0.51	0.09	0.51	
22	gamma	4	2	Θ	0.51	0.08	0.51	
11	e-	5	4	Θ	0.01	0.01	0.01	
11	e-	6	4	Θ	0.05	0.05	0.05	
11	e-	7	4	Ο	0.02	0.02	0.02	
11	e-	8	4	Ο	0.24	0.24	0.24	
11	e-	9	4	Θ	0.02	0.02	0.02	

XA size is 60cm x 60cm If happens on a XA, it should see energy deposit [3.68, 4.7] MeV (+ In ColdBox, some energy deposits is lost due to smaller drift region)

Spread over 50cm x 50cm, 511 keV γ s Compton scatter

4.7MeV γ in a LAr Bath (200m x 200m x 200m): **Compton scattering**

11

11

11

11

11

11

4

5

6

7

8

9

e-

e-

e-

e-

e-

e-

0

0

0

Θ

0

0

0

0

0

0

0

0

2.20

0.23

0.13

0.01

0.01

0.01

2.19

0.23

0.13

0.01

0.01

0.01

2.19

0.23

0.13

0.01

0.01

0.01

4.7MeV γ in a LAr Bath (200m x 200m x 200m): **Compton scattering - another example**

Close to max energy transfer: 4.45MeV

nts: asse	ert in	fo fr	om file	name		
(0.0, 0.0	9, 0.0) [mm]			
name ti	rkId p	arId	acId	KE	selfDepo	allDepo
				[MeV]	[MeV]	[MeV]
gamma	Θ		Θ	4.70	0.11	4.70
e-	1	Θ	Θ	4.40	4.40	4.40
e-	2	Θ	Θ	0.16	0.16	0.16
e-	3	Θ	Θ	0.03	0.03	0.03
e-	4	0	Θ	0.10	0.00	0.00
	nts: asse (0.0, 0.0 name tr gamma e- e- e- e- e-	nts: assert in (0.0, 0.0, 0.0) name trkId pa gamma 0 e- 1 e- 2 e- 3 e- 3 e- 4	nts: assert info fr (0.0, 0.0, 0.0) [mm name trkId parId gamma 0 -1 e- 1 0 e- 2 0 e- 3 0 e- 4 0	nts: assert info from file (0.0, 0.0, 0.0) [mm] name trkId parId acId gamma 0 -1 0 e- 1 0 0 e- 2 0 0 e- 3 0 0 e- 4 0 0	nts: assert info from file name (0.0, 0.0, 0.0) [mm] name trkId parId acId KE [MeV] gamma 0 -1 0 4.70 e- 1 0 0 4.40 e- 2 0 0 0.16 e- 3 0 0 0.03 e- 4 0 0 0.10	nts: assert info from file name (0.0, 0.0, 0.0) [mm] name trkId parId acId KE selfDepo [MeV] [MeV] gamma 0 -1 0 4.70 0.11 e- 1 0 0 4.40 4.40 e- 2 0 0 0.16 0.16 e- 3 0 0 0.03 0.03 e- 4 0 0 0.10 0.00

XA should see all 4.7 MeV energy deposit if such max energy transfer happens

4.7MeV γ in a LAr Bath (200m x 200m x 200m)

All 4.7 MeV energy is deposited eventually, in different ways

Both Compton scattering or pair production can have localized and wide spread energy deposits

A super simplified picture

- The 730PE-peak comes from a total of 4.7MeV energy deposit for sure
 - Agrees with simulated electron with KE 4.7 MeV
- Is the right super simplified hypothetic breakdown correct? Probably not! \bullet

 - Hypothetic pair production is 40%, higher than expected (~20%, where is this expected number from?) • Pair production should have a longer tail to the left side of the distribution
 - Most likely Compton scattering with max E transfer also contribute to the 730PE-peak region

Another more educated picture?

- Would be interesting to look for this spectrum in data

 - If joint run with CRP, can also use CRP position information
- Further understand this spectrum from simulation
 - How does each process contribute to observed spectrum (next step study)

• Trigger/offline data selection: a large XA0 signal (hundreds PE) + small signal on other XA_i (<10 PE)

1.2MeV γ and e-: ~15cm above XA0 center

- At this energy, dominated by Compton scattering (no pair production)
 - Max energy transfer through Compton scattering is ~0.948MeV
 - How to understand the red signal shape from 1.2MeV γ ? Need more study

Generated at x=0, y=-38, z=257.9 (cm)

167keV γ : ~15cm above XA0 center

Generated at x=0, y=-38, z=257.9 (cm)