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Points to Discuss 
1.! Intro: Why EDMs? EDMs and New Physics. Effective 

Lagrangian at 1 GeV.  
2.! EDMs from CKM – estimates for dq, de, dn, etc. More relevant 

question: suppose you see a non-zero EDM at 10-XX e cm. At 
what level of –XX are you no longer comfortable declaring it 
New Physics? History lessons.  

3.! EDMs from the theta-term. Symmetries of the problem. 
Different ways of estimating the effect.  

4.! BAU from CKM and theta. More sources of CP are likely 
needed but their scale can be anywhere from 100 to 1016 GeV 

5.! Hard realities for New Physics in 2013. EDMs from 100 TeV 
SUSY. No kidding - might be a realistic goal (             ) 

6.! Sweet dreams: enhancement of Higgs branching to two photons 
via the FFdual (CP-odd channel) Constraints from two-loop 
EDMs all but kill this possibility, but there are exceptions.  
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Why bother with EDMs?

Is the accuracy su! cient to probe TeV scale and beyond?

Typical energy resoultion in modern EDM experiments

" Energy! 10" 6Hz ! 10" 21eV

translates to limits on EDMs

|d| <
" Energy

Electric Þeld
! 10" 25e# cm

Comparing with theoretically inferred scaling,

d ! 10" 2 #
1 MeV
#2

CP
,

we getsensitivity to

#CP ! 1 TeV

Comparable with the LHC reach! EDMs are one of
the very few low-energy measurements sensitive to
the fundamental particle physics.

Maxim Pospelov, GGI workshop, Florence 03/23/2010
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Electric Dipole Moments

Purcell and Ramsey (1949) (ÒHow do we know that strong in-
teractions conserve parity?Ó!" |dn| < 3# 10! 18ecm.)

H = ! µB á
S
S

! dE á
S
S

d $= 0 means that both P and T are broken. If CPT holds then
CP is broken as well.

CPT is based on locality, Lorentz invariance and spin-statistics
= very safe assumption.

search for EDM = search for CP violation, if CPT holds

Relativistic generalization

HT,P! odd = ! dE á
S
S

" L CP! odd = ! d
i
2
!" µ#$5! Fµ#,

corresponds to dimension Þve e! ective operator and naively sug-
gests 1/M new physics scaling. Due toSU(2) # U(1) invariance,
however, it scales asmf /M 2.

Maxim Pospelov, GGI workshop, Florence 03/23/2010



CKM model!
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CP violation via in CKM matrix

There are two possible sources ofCP violation at the renormal-
izable level:! KM and"QCD.

! KM is the form of CP violation that appears only in the charged
current interactions of quarks.

L cc =
g!
2

( øULW/ + V DL + (H.c.)
)
.

CP violation is closely related to ßavour changing interactions.




dI

sI

bI




=





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d
s
b




" VCKM





d
s
b




.

CKM model ofCP violation is independenly checked using nu-
tral K andB systems.No other sources ofCP are needed to
describe observables!

CP violation disappear if any pair of the same charge quarks is
degenerate or some mxing angles vanish.

JCP = Im( VtbV #
tdVcdV #

cb)$

(y2
t %y2

c)(y2
t %y2

u)(y2
c %y2

u)(y2
b %y2

s)(y2
b %y2

d)(y2
s %y2

d)

< 10%15

Maxim Pospelov, GGI workshop, Florence 03/23/2010



EDMs from CKM!
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Why EDMs are important

�a

! !

d d

gluon

t cb

CKM phase generates tiny EDMs:

dd ∼ Im(VtbV ∗
tdVcdV ∗

cb)! smdG2
F m2

c × loop suppression

< 10−33ecm

EDMs do not have "KM -induced background. On a
ßip-side, "CKM cannot source baryogenesis.

EDMs test

1. Extra amount of CP violation in many models beyond SM

2. Some (but not all!) theories of baryogenesis

3. Mostlyscalar-fermioninteractions in the theory

4. EDMs are one of the very few low-energy probes that are
sensitive to energy scale of new physics beyond 1 TeV

Maxim Pospelov, GGI workshop, Florence 03/23/2010

Direct quark EDMs identically vanish at 1 and 2 loop levels  

(Shabalin, 1981). 3-loop EDMs are calculated by Khriplovich.  

de first appears at 4 loops (Khriplovich, MP, 1991) < 10-37 cm 



Long(er) distance contribution dominate!

! ! Combination of ! S =+1 and ! S =-1 (and ! charm = ± 1) gives a larger 
estimate to dn than just dq. Can be as large as 10-31 e cm (Khriplovich, 
Zhitnitskiy; Gavela et al). Charm contribution was recently looked at by 
Mannel, Uraltsev.!

! !  EDMs of diamagnetic atomic species (closed e shells, nuclear spin) are 
generated by the CKM contribution to the nuclear Schiff moment. 
(Novosibirsk group; Donoghue, Holstein, Musolf)!

! ! Direct contribution of de(CKM) to dAtom is negligible compared to the semi-
leptonic contribution (Schiff moment, nuclear CP-odd polarizability).!
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Fig. 6. A leading contribution to the neutron EDM in the Stand ard Model, arising via a
four-quark operator generated bya strong penguin, and then a subsequent enhancement
via a chiral ! + loop.

estimated that this mechanism could lead to a KM-generated EDM of the
neutron of order [89],

dKM
n " 10! 32e cm. (3.103)

However, this is still six to seven orders of magnitude smaller than the
current experimental limit.

¥ lepton EDMs

The KM phase in the quark sector can induce a lepton via a diagram
with a closed quark loop, but a non-vanishing result appearsÞrst at the
four-loop level [90] and therefore is even more suppressed,below the level
of

dKM
e # 10! 38e cm, (3.104)

and so small that the EDMs of paramagnetic atoms and molecules would be
induced more e! ciently by e.g. Schi" moments and otherCP-odd nuclear
moments.

In this regard, we note that recent data on neutrino oscillations points
toward the existence of neutrino masses, mixing angles, andpossibly of
new CKM-like phase(s) in the lepton sector. Under the assumption that
neutrinos are Majorana particles, the presence of these newCP-odd phases
in the lepton sector allows for a non-vanishing two-loop contributions to
de [91], without any further additions to the Standard Model. H owever,
recent calculations [92] show that a typical see-saw pattern for neutrino
masses and mixings only induces a tiny contribution to the EDMs in this

Bottom line: EDMs(CKM) are ~ 5 orders and more below current limits 
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One thing is to estimate EDM(CKM), another thing 
is to quantify our confidence in such estimate 

History of past 2 decades have shown that many developments 
proceed along the following scenario: 
1.! Theorists quantify some important observable where strong 

interactions are important (! ’/! ; CP-violation in charm; Lamb 
shift in µH; lepton flavor dependence in B" D l " …), and 
draw a line in the sand separating SM from New Physics.  

2.! Experimentalists measure something significantly different, 
e.g. much larger than original theory predictions – implying 
some NP if the theory calculations are taken too seriously.  

3.! [At least some parts of] theory community “flips”, and admits 
that the SM effects could have been amplified [or errors on the 
original estimates must be inflated]. 

4.! We end up at impasse: neither SM nor NP, and given any 
absence of direct NP at colliders, SM wins…   
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What is the Òßipping benchmarkÓ for EDMs? !
 

 
 
 
 

Consider an outrageous overestimate for dn that puts loop factors  

like #s/4$  to 1, and chooses constituent rather current quark mass scale 

dn ~ Im(VVVV) GF
2mc

2 × 100 MeV  < 10-29 cm.  

 

¥! Nonzero neutron EDM above 10-29 cm is guaranteed to be NP 

¥! Nonzero n EDM in -29 to -31 range is either NP or SM. 

¥! Nonzero n EDM at -31 and below will be consistent with the SM.  



CP violation from the Theta term!
! ! If CKM gave too small an EDM, there is a much bigger source of 

CP violation in the ßavor conserving channel  - theta term!
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Strong CP problem

Energy of QCD vacuum depends on! -angle:

E(ø! ) = !
1
2

ø! 2m" #qq$+ O(ø! 4, m2
" )

where#qq$ is the quark vacuum condensate andm" is the re-
duced quark mass,m" = mumd

mu+ md
. In CP-odd channel,

dn % e
ø! m"

! 2
had

% ø! á(6 & 10! 17) ecm

Strong CP problem= naturalness problem = Why|ø! | < 10! 9

when it could have beenø! % O(1)? ø! can keep ÓmemoryÓ of
CP violation at Planck scale and beyond. Suggested solutions

¥ Minimal solutionmu = 0 ' apparently can be ruled out
by the chiral theory analysis of other hadronic (CP-even)
observables.

¥ ø! = 0 by construction, requiring either exact P or CP at high
energies + their spontaneous breaking. Tightly constrained
scenario.

¥ Axion, ø! ( a(x)/f a, relaxes toE = 0, eliminating theta
term. a(x) is a very light Þeld. Not found so far.

Maxim Pospelov, GGI workshop, Florence 03/23/2010

Axions; clever symmetry for keeping theta=0; mu=0É !



More on strong CP!
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More on Strong CP

Topological susceptibility

E(ø! ) =
1
2

ø! 2" (0) = !
i

8#2
ø! 2 lim

k" 0

!

d4xeikx
" $s

2#
G ÷G(x),

$s

2#
G ÷G(0)

#

,

naively should be zero.

Crewther, SVZ:

" (0) = ! 16m#$0|qq|0%

! i
!

d4x
"

0
$
$
$
$
$
$
$
$
T

%
&&'

&&(
m#

)

i= u,d
øqi%5qi (x) , m#

)

i= u,d
øqi%5qi (0)

*
&&+

&&,

$
$
$
$
$
$
$
$
0

#

.(1)

In the limit of restoredU(1), " (0) = 0 and vacuum energy,
g#NN , dn are! independent!

Using similar technique, one can calculate$G ÷G, øqi%5q%,
$G ÷G, øqi(G&)%5q%. The latter is very important, as it describes
the shift of axionic vacuum under the inßuence of color EDMs:

! ind = !
m2

0

2
)

q= u,d,s

÷dq

mq
,

wherem2
0 is the mixed quark-gluon condensate,

gs$øqG&q% &m2
0$qq%.

dn result changes, and expression fordn(! ) is needed even if PQ
mechanism is in place.

The remaining correlator is between two isoscalar pseudo-scalar 
densities. Can be saturated by the exchange of the singlet (eta for Nf=2) 

If in chiral limit m2
eta "  m2

pi ~ mq, the quantity (1) vanishes. If on the 
other hand the mass of the singlet is heavy and does not go to zero in 
chiral limit, the second term is O(mq

2) and can be dropped.  



Symmetries to be respected!

! ! CP violation can reside in front of GGdual (" G) or qbar #5q (" q).!
Any theta-dependent physical observables must depend on " G+" q!

!
! ! Quark masses and quark mass phases must answer in a correct 

combination, m* "$

! ! When U(1) is restored by metaÕ "  mpi, any theta dependence should 
disappear. And in particular, neutron EDM, pion-nucleon coupling 
constants etc must vanish. !

It is possible to keep track of these symmetries in an analytic 
calculation (e.g. OPE in the external theta background), but [my 
understanding] they are difÞcult to fully implement on the lattice. !
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Various approaches to dn(theta)!
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Some well-known EDM results

1. Naive quark model.

dQM
n =

1
3
(4dd ! du).

no treatment of other operators

2. Naive dimensional analysis:dn is a linear combination of
e! qmq/! 2

had, dqÕs andegs
÷dq/(4" ). Order of magnitude esti-

mates, no spin or isospin dependence.

3. Chiral log estimatesCDVW

d#log
n =

e

4" 2Mn
g" NN øg(0)

" NN ln
!
m"

,

Di" cult to do higher-dimensional terms like÷dq and does not
apply todq.

4. Lattice is promising but di" cult: nothing concrete so far.

5. QCD sum rules. Provides treatment of all operators including
! within the same method.

Io ! e-type formula

Using! = 1, LO term in the OPE, double pole on the PHE
side, Borel mass =mn.

dest
n =

8" 2|!qq"|
m3

n

!

"
#
2#m#

3
e(ø$ $ $ind)

+
1
3
(4dd $ du) +

#m2
0

6
(4ed

÷dd $ eu
÷du)

$

%
%
& ,

where# is quark condensate in the EM Þeld (Io! e, Smilga)

! øq%µ&q"F = #qFµ&! øqq"; #q % eq#.

usingm3
n % 8" 2|!qq"| (Io! e), and# = $ Nc/ (4" 2f 2

" ) & $ 9
GeV$ 2 (Vainshtein),

dest
n = $

em#
ø$

2" 2f 2
"
,

Comparison with chiral log estimate:
gA!p|øuu $ ødd|p" ln(" /m " ) ' 2.

dest
n =

4
3
dd $

1
3
du $ e

'

(
(
)

mn

2" f "

*

+
+
,

2 '

(
)
2
3

÷dd +
1
3

÷du

*

+
, .

QCD sum rules estimate (MP, Ritz) 

Results for neutron EDM

M.P., A. Ritz, 2001.Correction for a factor 2 error in 2005

dn(ø! ) = (1 ± 0.5)
|!qq"|

(225MeV)3
ø! # 2.5 10$ 16ecm,

dPQ
n (dq, ÷dq) = (1 ± 0.5)

|!qq"|
(225MeV)3

!

1.1e( ÷dd + 0.5÷du)

+1.4(dd $ 0.25du)] ,

This answer satisÞes most of the criteria for an ÓidealÓ EDM
calculation.

In a simplified Ioffe-type estimate, using Vainshtein’s value for the EM  

Susceptibility of the QCD vacuum,  

So, the two results are very close      

Io ! e-type formula

Using! = 1, LO term in the OPE, double pole on the PHE
side, Borel mass =mn.
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6
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$

%
%
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where# is quark condensate in the EM Þeld (Io! e, Smilga)

! øq%µ&q"F = #qFµ&! øqq"; #q % eq#.

usingm3
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,

Comparison with chiral log estimate:
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Baryon asymmetry of the Universe

Basic facts that are known about observable Universe:
1. nB ! n øB
2. ! B " nB /n " = 6.1± 0.1# 10$ 10 (Any baryogenesis scenario
would have mostlytheoretical uncertainties. )
3. Fluctuations in the CMB spectrum give a strong support
to an inßationary paradigm. Theinitial state of the Universe
according to inßation was vacuum-like, and thereforeB- øB sym-
metric. Baryogenesis is needed!

Baryogenesis" a process that transfers intial baryo-symmetric
state of the universe to a state withnB $ n øB > 0.

Baryons can be generated dynamically ! (Sakharov, 1967)
ThreeSakharovÕs conditionsfor baryogensis
1. Baryon number violation
2. C and CP violation
3. Departure from thermal equilibrium

First three conditions arein principle satisÞed within Standard
Model atT % 100 GeV.

Maxim Pospelov, GGI workshop, Florence 03/23/2010

Cosmological reasoning for extra CP violation:  Baryogenesis  



SM by itself doesnÕt seem to work for BAU!
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Could SM generate observed ! B?

No.

Objection 1. There is not enoughCP violation. ! B ("CKM )
is suppressed byJCP < 10−15. ! B (#QCD) is suppressed by
mumdmsmcmbmt/T 6.

Objection 2.The departure from equilibrium isvery small be-
cause the cosntraint from LEPII,mh > 114 GeV necessarily
implies theabsenceof the Þrst order electroweak phase transi-
tion.

New Physics is required
50+ scenarios have been put forward

Model of Axion EDMs are New Physics2$0% proton
Baryogenesisrequired measurable below TeV decay decay

GUT + − − ± +
Electroweak + + + − −
Leptogenesis − − − + −

Maxim Pospelov, GGI workshop, Florence 03/23/2010

Notice that not everyone gave up on BAU(CKM) – from time to time weird scenarios emerge 
that may have some hope, (e.g. initial conditions with vev=0, T=0 etc.) 



EDMs and New Physics!
! ! EDM observable   ~!
      ~ [some QCD/atomic/nuclear matrix elements]   "!

!
                SM mass scale (me, mq)  "  (CP phase)NP/%NP

2!
!

With some amount of work all matrix elements can be Þxed. For the 
ßavor blind NP, di ~ mi.   Unfortunately, we have no idea where 
actually %NP is !!!  !

100 GeV, 1 TeV, 10 TeV, 100 TeV, 1000 TeV É GUT scale É M P!

!
After the LHC did not Þnd the abundance of new states immediately 
above EW scale, Òguessing EDMsÓ became even more difÞcult. 
What shall we put in the denominator? E.g. (TeV)2 or (PeV)2? !
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but may be the reason for pessimism is premature? 
Thanks to the LHC experiments we now know that: 

1.! There is a new, [almost definitely] scalar resonance with high 
significance at about ~ 125 GeV that on average fits the SM 
Higgs boson description rather well.  

2.! While some of the exotic physics (new strongly-interacting 
states with advantageous decay channels, new heavy EW boson 
like resonances etc) is pushed to above TeV, there is plenty of 
room for new physics with EW strength interactions that can 
make appearance at few 100 GeV. 

3.! There is an intriguing discrepancy in R%%  [for three more weeks?] and 
it could be a hint on something new and exciting right around 
the EW scale.  

4.! As to SUSY models, they became either “weird” or far less 
natural. 90% of 2001 Snowmass models is dead! 

 
 
 



EDMs from 100 TeV SUSY!
! ! Measured Higgs mass value, ~126 GeV, may be pointing toward 

very heavy squark mass scale. The Higgs potential must be 
ÒtunedÓ to a considerable level. !

! ! Such mass scale, 100 TeV-PeV allows [almost] not to worry 
about SUSY ßavor issues [and about producing sfermions at the 
LHC]. Wells, 2003; É. Most recently Arkani-Hamed et al. 2012.!

! ! Gaugino may be around EW scale, giving dark matter and 
allowing many models of SUSY breaking to easily explain such a 
scenario. !

! ! Such a huge mass scale suppresses all EDMs, of course, but the 
absence of ßavor-diagonal squark mass matrix can lead to a 
considerable enhancement via di~mtop, McKeen, MP, Ritz, in 
preparation. !
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Naturalness of masses and EDMs!
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Figure 1: The diagram that generates a contribution to theu quark mass,! mu, in Eq. (1).
Analogous diagrams can be drawn for thed quark and the electron. Additionally, (C)EDMs
are generated by this diagram when a photon (gluon) is attached.

leading contribution to its mass shift is
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where we have deÞned, as in the quark cases,$2
e # (! L

LL )13 (! e
RR )31. Like the d quark, unless

tan %is somewhat large, this is not likely to account for all of the electron mass, but, like
we saw with the quarks, this does not need to be Þne tuned to keep the electron light.

Given the shift in the u quark mass from the gluino-squark loop seen in Fig. 1, a contri-
bution to its (C)EDM arises from attaching a photon (gluon) to this diagram. In this simple
split picture with gauginos much lighter than squarks, theu quark CEDM1 is
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where we call the phase di" erence betweenµ and the u squark mass squared terms&÷uµ . As

1With squarks much heavier than gluinos, the CEDM is logarithmically enhanced relative to the EDM.
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Figure 1: The diagram that generates a contribution to theu quark mass,! mu, in Eq. (1).
Analogous diagrams can be drawn for thed quark and the electron. Additionally, (C)EDMs
are generated by this diagram when a photon (gluon) is attached.
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where we call the phase di" erence betweenµ and the u squark mass squared terms&÷uµ . As

1With squarks much heavier than gluinos, the CEDM is logarithmically enhanced relative to the EDM.

2

Common squark, Higgsino mass scale is assumed. Quark mass itself 
is also corrected and we require the tuning in mu not be very large,  

Saturating naturalness in mu allows fixing many free parameter in du.  

Current bounds on dHg limit CEDM of up quark at ~ 5×10-27 cm  

1 Introduction

The discovery of a standard model-like Higgs boson with a mass around 126 GeV combined

with the lack of evidence for super-partners of standard model (SM) particles at the LHC has

cast doubt on supersymmetry (SUSY) providing a natural solution to the hierarchy problem.

Combined with the already strong constraints from flavor- and CP-violating observables, this

points to the possibility that SUSY may be broken at a scale well above the weak scale with

a single fine-tuning allowing for a light Higgs.

Add more descriptions, references, etc. etc.

2 Fermion masses and EDMs

In the scenario described above, the large top mass can potentially seed the mass of the up

quark. In the language of mass insertions (MI), the contribution of a gluino-squark loop,

seen in Fig. 1, to the u-quark mass is

! mu !
" s

4#
M3(!

Q
LL )13 (! u

LR )33 (!
u
RR )31 . (1)

With squarks at the 100-1000 TeV scale, the mixings can potentially be large, $2
u " (! Q

LL )13 (! u
RR )31 !

O (1), which leads to

! mu !
" s

4#
$2

u
mtM3

! SUSY tan%
(2)

! 2 MeV

!
3

tan%

" !
$2

u

1/ 3

" !
M3

1 TeV

" !
100 TeV

! SUSY

"
, (3)

where we have labeled the scale of the squark and Higgsino masses ! SUSY (Msc ! µ ! ! SUSY).

Given a moderate tan%and large mixings, this contribution is of the right order of magnitude

to explain the small u quark mass, ! mu ! mu, and does not requires a large fine tuning to

keep the u quark light.

In the case of the d quark, the shift of its mass is given by a similar expression,

! md !
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4#
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d
mbM3 tan%

! SUSY
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! 0.5 MeV

!
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3

" !
$2

d

1/ 3
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" !
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"
, (5)

defining $2
d " (! Q

LL )13
#
! d

RR

$
31
. Unless the mixing in the down sector is extremely large or

tan%is somewhat larger than the moderate value we have normalized on, this is likely too

small a contribution to account for all of the d quark mass. However, as in the u quark case,

one does not have to fine tune a cancelation of this contribution to obtain a small d mass

because of the splitting between gauginos and squarks.

As for the electron, in this split picture with large mixings in the sleptons as well, the

1



Naturalness estimates for EDMs!
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du
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Currently dHg probes ~ 100 TeV scale in this scenario. So sub-PeV SUSY  

is not hopeless for EDMs. But we may never learn that it is SUSY… 

mh ~125 GeV 



Constraining properties of 125 GeV Higgs-
like particle with EDMs!

! ! New resonance discovered last year at the LHC may be exactly 
the SM Higgs or it may be a SM-Higgs-like with some deviations 
of its couplings from whatÕs expected in the SM!

! ! It is Tempting to speculate that the current enhancement in 
2gamma channel comes from the CP-odd channel. !

! ! If so, does it have any implications for the EDMs, and vice verse, 
do EDMs put certain constraints on the couplings and decay 
channels of this new resonance? !

������
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Recent results from ATLAS and CMS 

 
 
 
 
 
 
 
 
 
Both collaborations show slight excess in R%% This may all go 

away, or may firm up to an interesting deviation from the SM&



������

Reminder about ' %%&

 
 
which corresponds to branching of 0.0023. Top contribution to 

amplitude is positive, and W is negative and large,  
 
 
 
Before the Higgs discovery, one could guess that if anything   

    
 
will go down because more heavy matter fields like tops is 

possibly out there.  
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The ensuing correction to the SMh ! γγ width,
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m3
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takes the form
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where ASM (mh = 125 GeV) " AW + At " # 6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

$
ch % 5 TeV. Note that

since the CP-odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ ÷" 4).

A. EDM limit on contact operators

Current experiments [8Ð11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q) /v .

Thus it is useful to introduce the auxiliary quantity d(2 l)
f

that quantiÞes this two-loop benchmark EDM scale,

d(2 l)
f

&
|e|αmf

16π3v2 =' d(2 l)
e

" 2.5 ( 10! 27 eácm. (5)

One observes thatd(2 l)
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for
d(2 l)
q [13].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,

di = ÷ch
|e|mf
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" 2
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%
, (7)

with explicit dependence on the UV scale" UV . If this
scale is identiÞed with ÷" , then using the current bound
on the electron EDM, |de| < 1.05( 10! 27ecm [8], we Þnd

÷" ! 50
&

÷ch TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion thatCP-odd corrections are lim-
ited by

# R!! (÷ch) " 1.6 ( 10! 4. (9)

However, this conclusion can be relaxed in speciÞc UV
completions. As we discuss in the next subsection, the
logarithm ln( ÷" 2/m 2

h
) % 10 cannot generally be stretched

all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more signiÞcant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a speciÞc UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion ψ with mass m" transforming as (1, 1, Q" )
under SU(3)( SU(2)( U(1), and a singlet öS with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,

LSH" = øψiγµ(i∂µ # eQ" Aµ)ψ

+ øψ
'
m" + öS(YS + iγ5 ÷YS)

(
ψ + LHS . (10)

The terms in LHS contain scalar kinetic terms and de-
scribe the Higgs-portal interaction between öS and H via
the following potential,

VHS = # µ2
H

H   H + λH (H   H )4 +
1
2

öm2
S

öS2

+ AH   H öS # B öS +
λS

4
öS4 . (11)

CP-odd couplings of the Higgs proportional to the com-
bination A ÷YS are generated, while the term linear in öS
can always be adjusted to ensure) öS* = 0. We retain
only the photon contribution of the J "

µ
vector current,

as the Z contribution is suppressed by the small value of
ge

V
. After the breaking of SU(2) ( U(1), the öS Þeld mixes

with what would be the SM Higgs bosonöh to produce
two mass eigenstatesh and S,
$ öh

öS

%
=

$
c# s#

# s# c#

% $
h
S

%
, tan 2θ =

2Av
öm2
S

# 2λHv2 ,

(12)
where s# (c#) stands for sinθ (cosθ). Both mass eigen-
states inherit Higgs-like interactions with the SM Þelds
and couplings toψ fermions.

The dominant two-loop contribution to fermion EDMs
is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
of ÷YS , θ and m" ,

df = d(2 l)
f
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(13)
where the loop function is given by

g(z) =
z
2

+ 1

0
dx

1
x(1 # x) # z

ln
$

x(1 # x)
z

%
, (14)

which satisÞesg(1) % 1.17 and g % 1
2 ln z for large z.

It is instructive to consider di $erent limits of
(13). When mh + m" , mS , to logarithmic accuracy
g(m2

" /m 2
h
) # g(m2

" /m 2
S

) ! 1
2 ln(m2

min /m 2
h
), where mmin

is the smaller of mS and m" . In this limit, the heavy
Þelds can be integrated out sequentially, withS and ψ
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The ensuing correction to the SMh ! !! width,
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where ASM (mh = 125 GeV) " AW + At " # 6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

$
ch % 5 TeV. Note that

since the CP-odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ ÷" 4).

A. EDM limit on contact operators

Current experiments [8Ð11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q) /v .

Thus it is useful to introduce the auxiliary quantity d(2 l )
f

that quantiÞes this two-loop benchmark EDM scale,

d(2 l )
f &

|e|#mf

16" 3v2 =' d(2 l )
e " 2.5 ( 10−27 eácm. (5)

One observes thatd(2 l )
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for
d(2 l )

q [13].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,

di = ÷ch
|e|mf

4" 2 ÷" 2
ln

$
" 2

UV

m2
h

%
(6)

= d(2 l )
f (

÷ch

#/ (4" )
(

v2

÷" 2
ln

$
" 2

UV

m2
h

%
, (7)

with explicit dependence on the UV scale" UV . If this
scale is identiÞed with ÷" , then using the current bound
on the electron EDM, |de| < 1.05( 10−27ecm [8], we Þnd

÷" ! 50
&

÷ch TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion thatCP-odd corrections are lim-
ited by

# R!! (÷ch ) " 1.6 ( 10−4. (9)

However, this conclusion can be relaxed in speciÞc UV
completions. As we discuss in the next subsection, the
logarithm ln( ÷" 2/m 2

h ) % 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more signiÞcant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a speciÞc UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion $ with mass m" transforming as (1, 1, Q" )
under SU(3)( SU(2)( U(1), and a singlet öS with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,

L SH " = ø$ i ! µ (i%µ # eQ" Aµ )$

+ ø$
'
m" + öS(YS + i ! 5 ÷YS)

(
$ + L HS . (10)

The terms in L HS contain scalar kinetic terms and de-
scribe the Higgs-portal interaction between öS and H via
the following potential,

VHS = # µ2
H H   H + &H (H   H )4 +

1
2

öm2
S

öS2

+ AH   H öS # B öS +
&S

4
öS4 . (11)

CP-odd couplings of the Higgs proportional to the com-
bination A ÷YS are generated, while the term linear in öS
can always be adjusted to ensure) öS* = 0. We retain
only the photon contribution of the J "

µ vector current,
as the Z contribution is suppressed by the small value of
ge

V . After the breaking of SU(2) ( U(1), the öS Þeld mixes
with what would be the SM Higgs bosonöh to produce
two mass eigenstatesh and S,
$ öh
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% $
h
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%
, tan 2' =

2Av
öm2

S # 2&H v2 ,

(12)
where s# (c#) stands for sin' (cos' ). Both mass eigen-
states inherit Higgs-like interactions with the SM Þelds
and couplings to $ fermions.

The dominant two-loop contribution to fermion EDMs
is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
of ÷YS, ' and m" ,

df = d(2 l )
f ( Q2

"
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where the loop function is given by

g(z) =
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+ 1
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, (14)

which satisÞesg(1) % 1.17 and g % 1
2 ln z for large z.

It is instructive to consider di $erent limits of
(13). When mh + m" , mS, to logarithmic accuracy
g(m2
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h ) # g(m2

" /m 2
S) ! 1

2 ln(m2
min /m 2

h ), where mmin
is the smaller of mS and m" . In this limit, the heavy
Þelds can be integrated out sequentially, withS and $
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where ASM (mh = 125 GeV) � AW + At � −6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

√
ch ∼ 5 TeV. Note that

since the CP-odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ ÷" 4).

A. EDM limit on contact operators

Current experiments [8Ð11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q) /v .

Thus it is useful to introduce the auxiliary quantity d(2 l )
f

that quantiÞes this two-loop benchmark EDM scale,

d(2 l )
f ≡

|e|#mf

16" 3v2 =⇒ d(2 l )
e � 2.5× 10! 27 eácm. (5)

One observes thatd(2 l )
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for
d(2 l )

q [13].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,
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|e|mf
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with explicit dependence on the UV scale" UV . If this
scale is identiÞed with ÷" , then using the current bound
on the electron EDM, |de| < 1.05×10! 27ecm [8], we Þnd

÷" ! 50
&

÷ch TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion thatCP-odd corrections are lim-
ited by

# R!! (÷ch ) " 1.6× 10! 4. (9)

However, this conclusion can be relaxed in speciÞc UV
completions. As we discuss in the next subsection, the
logarithm ln( ÷" 2/m 2

h ) ∼ 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more signiÞcant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a speciÞc UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion $ with mass m" transforming as (1, 1, Q" )
under SU(3)×SU(2)×U(1), and a singlet öS with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,

L SH " = ø$ i ! µ (i%µ − eQ" Aµ )$

+ ø$
'
m" + öS(YS + i ! 5 ÷YS)

(
$ + L HS . (10)

The terms in L HS contain scalar kinetic terms and de-
scribe the Higgs-portal interaction between öS and H via
the following potential,

VHS = −µ2
H H   H + &H (H   H )4 +

1
2

öm2
S

öS2

+ AH   H öS − B öS +
&S

4
öS4 . (11)

CP-odd couplings of the Higgs proportional to the com-
bination A ÷YS are generated, while the term linear in öS
can always be adjusted to ensure� öS� = 0. We retain
only the photon contribution of the J "

µ vector current,
as the Z contribution is suppressed by the small value of
ge

V . After the breaking of SU(2)×U(1), the öS Þeld mixes
with what would be the SM Higgs bosonöh to produce
two mass eigenstatesh and S,
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, tan 2' =

2Av
öm2

S − 2&H v2 ,

(12)
where s# (c#) stands for sin' (cos' ). Both mass eigen-
states inherit Higgs-like interactions with the SM Þelds
and couplings to $ fermions.

The dominant two-loop contribution to fermion EDMs
is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
of ÷YS, ' and m" ,
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where the loop function is given by
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1
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, (14)

which satisÞesg(1) ∼ 1.17 and g ∼
1
2 ln z for large z.

It is instructive to consider di $erent limits of
(13). When mh � m" , mS, to logarithmic accuracy
g(m2

" /m 2
h ) − g(m2

" /m 2
S) → 1

2 ln(m2
min /m 2

h ), where mmin
is the smaller of mS and m" . In this limit, the heavy
Þelds can be integrated out sequentially, withS and $
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Ways to influence [and enhance] R%%&

1.! More Higgs doublets: nHDM (where n=2,3… Preserve MFV) 
2.! New vector-like charged particles with mass not originating 

solely from the Higgs vev. Roughly you need    
 mVL ~ m0 +c(v+h). If c is negative, then the sign of VL-

matter-mediated amplitude is flipped relative to top.  
3.! Different CP channel for h" gg, so that amplitudes A+ and A- 

do not interfere, and ' %% ~ |A+|^2 +|A-|^2 gets bigger.  
 
Let us look at option 3. 
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More on the CP-odd channel for Higgs 
(McKeen, MP, Ritz)&

Consider two effective operators from some physics that is 
integrated out: 

Then,  
 
and deviations are O(1) if  c/% ~ 1/5 TeV.  
 
Given that coefficients c and c_tilde are most likely perturbative,  
~ alpha, then O(1) deviations are only if Lambda is relatively low.  
 
The CP is probed rather well in many channels – is it reasonable 
to expect large contribution from the CP-odd channel?  
 

ModiÞed Higgs branching ratios versus CP and lepton ßavor violation

David McKeen,1 Maxim Pospelov,1, 2 and Adam Ritz1

1Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
2Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9, Canada

(Dated: August 2012)

New physics thresholds which can modify the diphoton and dilepton Higgs branching ratios sig-
niÞcantly, may also provide new sources ofCP and lepton ßavor violation. We Þnd that limits on
electric dipole moments impose strong constraints on any CP -odd contributions to Higgs diphoton
decays, unless there are degeneracies in the Higgs sector that enhanceCP -violating mixing. We
exemplify this point in the language of e ffective operators, and in simple UV-complete models with
vector-like fermions. In contrast, we Þnd that electric dipole moments and lepton ßavor violat-
ing observables provide less stringent constraints on new thresholds contributing to Higgs dilepton
decays.

1. INTRODUCTION

The recent discovery of a Higgs-like resonance at the
LHC [1], with a mass of approximately 125 GeV consis-
tent with electroweak precision observables, has solidiÞed
the impressive veriÞcation of the Standard Model (SM)
at the electroweak scale. At the present time, the cou-
plings of this resonance agree on average rather well with
those of the SM Higgs boson.

The lack of hints for New Physics (NP) in other chan-
nels has focused attention on the detailed properties of
the Higgs-like resonance, and deviations from the SM
in its decays to various Þnal states. Indeed, while the
LHC now strongly constrains NP that can be produced
either resonantly or in pairs from proton constituents
with well-identiÞable Þnal states Ð e.g.Z ! bosons decay-
ing to leptons, or squark/gluino decays to jets, leptons
and missing energy Ð NP produced via electroweak in-
teractions or other weakly coupled hidden sectors is far
less constrained. The latter possibilities are now com-
ing under additional scrutiny as possible explanations for
small 2σ deviations from the SM in certain Higgs pro-
duction/decay channels [1], speciÞcally, the apparent en-
hancement in the diphoton branching Br(h ! γγ) [2] and
a possible suppression of decays to dileptons Br(h ! ττ ).
Although these deviations are small and may well dissi-
pate with more data, they motivate the exploration of
viable models of NP that could provide an explanation.
The recent literature has focused on Br(h ! γγ) and
noted that relatively light (typically sub 300 GeV) elec-
tromagnetically charged Þelds that are vector-like (VL),
i.e. with a contribution to their mass which does not
come form electroweak symmetry breaking, can lead to
the required enhancement while still being accessible
with su! cient statistics at the LHC [3Ð5].

Exploration of Higgs interactions in this way will be an
important probe of NP in coming years, and thus it is im-
portant to clarify the full range of interactions that allow
for measurable corrections to the Higgs branching rates,
and the interplay with other precision data, particularly
in the Yukawa sector. In this paper, we ask whether new
VL thresholds contributing to sizable deviations from SM

Higgs branching can also provide new sources ofCP and
ßavor violation [6, 7]. In Sec. 2, building on [7] we focus
on the CP-odd operator hFµ! ÷Fµ! , and elucidate the con-
nection between theCP-violating Higgs decay amplitude
and the impressive constraints on electric dipole moments
(EDMs) of elementary particles [8Ð11]. We Þnd that the
inferred bound on the EDM of the electron [8, 9] does not
allow for signiÞcant CP-odd contributions to the Higgs
diphoton decay at the level of this dimension-Þve oper-
ator. We then consider two UV completions involving
VL fermions and/or singlets, and identify a special case
where the Higgs is nearly degenerate with a singlet scalar
that allows for large CP-odd contributions to the dipho-
ton decay that can escape EDM bounds. In Sec. 3, we
turn our attention to the ( H   H ) øL i

L Hej
R operators con-

tributing to dilepton decays, and consider the benchmark
sensitivity from lepton ßavor-violating (LFV) observables
and EDMs. Section 4 contains some concluding remarks.

2. EDMS VS DIPHOTON DECAYS

Consider new physics charged under SU(2)" U(1) only,
so that the leading dimension-6 operators which correct
the diphoton branching ratio of the Higgs are

" L =
g2

1

e2# 2 H   H
�

ah Bµ! B µ ! + ÷ah Bµ! ÷B µ!
�

+
g2

2

e2 ÷# 2
H   H

�
bh Wµ! W µ! + ÷bh Wµ! ÷W µ!

�
(1)

!
ch v
# 2 hFµ! F µ ! +

÷ch v
÷# 2

hFµ! ÷F µ! + á á á (2)

Here ch = ah + bh , ÷ch = ÷ah + ÷bh , v = 246 GeV and
we have only retained the hγγ operators, disregarding
couplings toZ and W . Since we focus on corrections that
are sizable for loop-induced couplings to the photon, the
associated corrections to the tree-levelhZZ and hW W
couplings can be consistently ignored. For thresholds in
the TeV range or above, measurement of the Higgs decay
rate itself probably provides the best sensitivity to # .
However, EDMs can provide sensitivity to the CP-odd
threshold ÷# .
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The ensuing correction to the SMh ! !! width,
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takes the form
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where ASM (mh = 125 GeV) " AW + At " # 6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

$
ch % 5 TeV. Note that

since the CP-odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ ÷" 4).

A. EDM limit on contact operators

Current experiments [8Ð11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q) /v .

Thus it is useful to introduce the auxiliary quantity d(2 l )
f

that quantiÞes this two-loop benchmark EDM scale,

d(2 l )
f &

|e|#mf

16" 3v2 =' d(2 l )
e " 2.5 ( 10! 27 eácm. (5)

One observes thatd(2 l )
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for
d(2 l )

q [13].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,

di = ÷ch
|e|mf

4" 2 ÷" 2
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with explicit dependence on the UV scale" UV . If this
scale is identiÞed with ÷" , then using the current bound
on the electron EDM, |de| < 1.05( 10! 27ecm [8], we Þnd

÷" ! 50
&

÷ch TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion thatCP-odd corrections are lim-
ited by

# R!! (÷ch ) " 1.6 ( 10! 4. (9)

However, this conclusion can be relaxed in speciÞc UV
completions. As we discuss in the next subsection, the
logarithm ln( ÷" 2/m 2

h ) % 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more signiÞcant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a speciÞc UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion $ with mass m" transforming as (1, 1, Q" )
under SU(3)( SU(2)( U(1), and a singlet öS with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,

L SH " = ø$ i ! µ (i%µ # eQ" Aµ )$

+ ø$
'
m" + öS(YS + i ! 5 ÷YS)

(
$ + L HS . (10)

The terms in L HS contain scalar kinetic terms and de-
scribe the Higgs-portal interaction between öS and H via
the following potential,

VHS = # µ2
H H   H + &H (H   H )4 +

1
2

öm2
S

öS2

+ AH   H öS # B öS +
&S

4
öS4 . (11)

CP-odd couplings of the Higgs proportional to the com-
bination A ÷YS are generated, while the term linear in öS
can always be adjusted to ensure) öS* = 0. We retain
only the photon contribution of the J "

µ vector current,
as the Z contribution is suppressed by the small value of
ge

V . After the breaking of SU(2) ( U(1), the öS Þeld mixes
with what would be the SM Higgs bosonöh to produce
two mass eigenstatesh and S,
$ öh

öS

%
=

$
c# s#

# s# c#

% $
h
S

%
, tan 2' =

2Av
öm2

S # 2&H v2 ,

(12)
where s# (c#) stands for sin' (cos' ). Both mass eigen-
states inherit Higgs-like interactions with the SM Þelds
and couplings to $ fermions.

The dominant two-loop contribution to fermion EDMs
is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
of ÷YS, ' and m" ,

df = d(2 l )
f ( Q2

"
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v
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sin(2' )
)
g(m2

" /m 2
h ) # g(m2

" /m 2
S)

*
,

(13)
where the loop function is given by

g(z) =
z
2

+ 1

0
dx

1
x(1 # x) # z

ln
$

x(1 # x)
z

%
, (14)

which satisÞesg(1) % 1.17 and g % 1
2 ln z for large z.

It is instructive to consider di $erent limits of
(13). When mh + m" , mS, to logarithmic accuracy
g(m2

" /m 2
h ) # g(m2

" /m 2
S) ! 1

2 ln(m2
min /m 2

h ), where mmin
is the smaller of mS and m" . In this limit, the heavy
Þelds can be integrated out sequentially, withS and $
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Current sensitivity of electron EDM&
 
Current limit on electron electric dipole moment,   
 
 
It was improved last year by the IC group (Hudson et al, Nature, 
2011), the result is limited by the statistical error, and the 
experiment is on-going.  
 
This is beyond the 2-loop benchmark from EW scale particles: 
 
 
Does the CP-odd amplitude that creates O(1) enhancement in R%% 
contribute to electron EDM at  this level or larger?  
Answer: much larger 
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where ASM (mh = 125 GeV) " AW + At " # 6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

$
ch % 5 TeV. Note that

since the CP-odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ ÷" 4).

A. EDM limit on contact operators

Current experiments [8Ð11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q) /v .

Thus it is useful to introduce the auxiliary quantity d(2 l )
f

that quantiÞes this two-loop benchmark EDM scale,

d(2 l )
f &

|e|αmf

16π3v2 =' d(2 l )
e " 2.5 ( 10! 27 eácm. (5)

One observes thatd(2 l )
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for
d(2 l )

q [13].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,
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with explicit dependence on the UV scale" UV . If this
scale is identiÞed with ÷" , then using the current bound
on the electron EDM, |de| < 1.05( 10! 27ecm [8], we Þnd

÷" ! 50
&

÷ch TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion thatCP-odd corrections are lim-
ited by

# R!! (÷ch ) " 1.6 ( 10! 4. (9)

However, this conclusion can be relaxed in speciÞc UV
completions. As we discuss in the next subsection, the
logarithm ln( ÷" 2/m 2

h ) % 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more signiÞcant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a speciÞc UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion ψ with mass m" transforming as (1, 1, Q" )
under SU(3)( SU(2)( U(1), and a singlet öS with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,

L SH " = øψiγµ (i∂µ # eQ" Aµ )ψ

+ øψ
'
m" + öS(YS + iγ5 ÷YS)

(
ψ + L HS . (10)

The terms in L HS contain scalar kinetic terms and de-
scribe the Higgs-portal interaction between öS and H via
the following potential,

VHS = # µ2
H H   H + λH (H   H )4 +

1
2

öm2
S

öS2

+ AH   H öS # B öS +
λS

4
öS4 . (11)

CP-odd couplings of the Higgs proportional to the com-
bination A ÷YS are generated, while the term linear in öS
can always be adjusted to ensure) öS* = 0. We retain
only the photon contribution of the J "

µ vector current,
as the Z contribution is suppressed by the small value of
ge

V . After the breaking of SU(2) ( U(1), the öS Þeld mixes
with what would be the SM Higgs bosonöh to produce
two mass eigenstatesh and S,
$ öh
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2Av
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(12)
where s# (c#) stands for sinθ (cosθ). Both mass eigen-
states inherit Higgs-like interactions with the SM Þelds
and couplings toψ fermions.

The dominant two-loop contribution to fermion EDMs
is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
of ÷YS, θ and m" ,
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where the loop function is given by

g(z) =
z
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0
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1
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ln
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, (14)

which satisÞesg(1) % 1.17 and g % 1
2 ln z for large z.

It is instructive to consider di $erent limits of
(13). When mh + m" , mS, to logarithmic accuracy
g(m2

" /m 2
h ) # g(m2

" /m 2
S) ! 1

2 ln(m2
min /m 2

h ), where mmin
is the smaller of mS and m" . In this limit, the heavy
Þelds can be integrated out sequentially, withS and ψ
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where ASM (mh = 125 GeV) " AW + At " # 6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

$
ch % 5 TeV. Note that

since the CP-odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ ÷" 4).

A. EDM limit on contact operators

Current experiments [8Ð11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q) /v .

Thus it is useful to introduce the auxiliary quantity d(2 l )
f

that quantiÞes this two-loop benchmark EDM scale,

d(2 l )
f &

|e|#mf

16" 3v2 =' d(2 l )
e " 2.5 ( 10! 27 eácm. (5)

One observes thatd(2 l )
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for
d(2 l )

q [13].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,
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with explicit dependence on the UV scale" UV . If this
scale is identiÞed with ÷" , then using the current bound
on the electron EDM, |de| < 1.05( 10! 27ecm [8], we Þnd

÷" ! 50
&

÷ch TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion thatCP-odd corrections are lim-
ited by

# R!! (÷ch ) " 1.6 ( 10! 4. (9)

However, this conclusion can be relaxed in speciÞc UV
completions. As we discuss in the next subsection, the
logarithm ln( ÷" 2/m 2

h ) % 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more signiÞcant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a speciÞc UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion $ with mass m" transforming as (1, 1, Q" )
under SU(3)( SU(2)( U(1), and a singlet öS with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,

L SH " = ø$ i ! µ (i%µ # eQ" Aµ )$

+ ø$
'
m" + öS(YS + i ! 5 ÷YS)

(
$ + L HS . (10)

The terms in L HS contain scalar kinetic terms and de-
scribe the Higgs-portal interaction between öS and H via
the following potential,

VHS = # µ2
H H   H + &H (H   H )4 +

1
2

öm2
S

öS2

+ AH   H öS # B öS +
&S

4
öS4 . (11)

CP-odd couplings of the Higgs proportional to the com-
bination A ÷YS are generated, while the term linear in öS
can always be adjusted to ensure) öS* = 0. We retain
only the photon contribution of the J "

µ vector current,
as the Z contribution is suppressed by the small value of
ge

V . After the breaking of SU(2) ( U(1), the öS Þeld mixes
with what would be the SM Higgs bosonöh to produce
two mass eigenstatesh and S,
$ öh
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=
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% $
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, tan 2' =

2Av
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(12)
where s# (c#) stands for sin' (cos' ). Both mass eigen-
states inherit Higgs-like interactions with the SM Þelds
and couplings to $ fermions.

The dominant two-loop contribution to fermion EDMs
is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
of ÷YS, ' and m" ,
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where the loop function is given by
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, (14)

which satisÞesg(1) % 1.17 and g % 1
2 ln z for large z.

It is instructive to consider di $erent limits of
(13). When mh + m" , mS, to logarithmic accuracy
g(m2

" /m 2
h ) # g(m2

" /m 2
S) ! 1

2 ln(m2
min /m 2

h ), where mmin
is the smaller of mS and m" . In this limit, the heavy
Þelds can be integrated out sequentially, withS and $
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Higgs-gamma loop is too big!&
 
Integrating h-gamma, we end up with log-sensitivity to UV scale,  
 
 
 
 
Cutting the log at the same scale, one ends up with  
 
which is a lot larger than h" 2 gamma rates “wants”. 
Consequently, once the EDM bound is imposed,  
 
This is very restrictive and one wonders if this would hold outside 
of the contact operator approximations. We need UV completions. 
I will consider a representative VL model. 
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where ASM(mh = 125 GeV) " AW + At " # 6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

$
ch % 5 TeV. Note that

since the CP-odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ ÷" 4).

A. EDM limit on contact operators

Current experiments [8Ð11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q)/v .

Thus it is useful to introduce the auxiliary quantity d(2l )
f

that quantiÞes this two-loop benchmark EDM scale,

d(2l )
f &

|e|#mf

16" 3v2
=' d(2l )

e " 2.5 ( 10! 27 eácm. (5)

One observes thatd(2l )
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for
d(2l )

q [13].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,
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with explicit dependence on the UV scale" UV. If this
scale is identiÞed with ÷" , then using the current bound
on the electron EDM, |de| < 1.05( 10! 27ecm [8], we Þnd

÷" ! 50
&

÷ch TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion thatCP-odd corrections are lim-
ited by

# R!! (÷ch ) " 1.6 ( 10! 4. (9)

However, this conclusion can be relaxed in speciÞc UV
completions. As we discuss in the next subsection, the
logarithm ln( ÷" 2/m 2

h ) % 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more signiÞcant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a speciÞc UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion $ with mass m" transforming as (1, 1, Q" )
under SU(3)( SU(2)( U(1), and a singlet öS with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,

L SH " = ø$ i ! µ (i%µ # eQ" Aµ )$

+ ø$
'
m" + öS(YS + i ! 5

÷YS)
(

$ + L HS . (10)

The terms in L HS contain scalar kinetic terms and de-
scribe the Higgs-portal interaction between öS and H via
the following potential,

VHS = # µ2
H H   H + &H (H   H )4 +
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+ AH   H öS # B öS +
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4
öS4 . (11)

CP-odd couplings of the Higgs proportional to the com-
bination A ÷YS are generated, while the term linear in öS
can always be adjusted to ensure) öS* = 0. We retain
only the photon contribution of the J "

µ vector current,
as the Z contribution is suppressed by the small value of
ge

V . After the breaking of SU(2) ( U(1), the öS Þeld mixes
with what would be the SM Higgs bosonöh to produce
two mass eigenstatesh and S,
$ öh

öS

%
=

$
c# s#

# s# c#

% $
h
S

%
, tan 2' =

2Av
öm2

S # 2&H v2
,

(12)
where s# (c#) stands for sin' (cos' ). Both mass eigen-
states inherit Higgs-like interactions with the SM Þelds
and couplings to $ fermions.

The dominant two-loop contribution to fermion EDMs
is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
of ÷YS, ' and m" ,

df = d(2l )
f ( Q2

"
÷YS

v
m"

sin(2' )
)
g(m2

" /m 2
h ) # g(m2

" /m 2
S)

*
,

(13)
where the loop function is given by
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which satisÞesg(1) % 1.17 and g % 1
2 ln z for large z.

It is instructive to consider di $erent limits of
(13). When mh + m" , mS, to logarithmic accuracy
g(m2
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" /m 2
S) ! 1

2 ln(m2
min/m 2

h ), where mmin

is the smaller of mS and m" . In this limit, the heavy
Þelds can be integrated out sequentially, withS and $
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where ASM (mh = 125 GeV) � AW + At � −6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

√
ch ∼ 5 TeV. Note that

since the CP-odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ ÷" 4).

A. EDM limit on contact operators

Current experiments [8Ð11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q) /v .

Thus it is useful to introduce the auxiliary quantity d(2 l )
f

that quantiÞes this two-loop benchmark EDM scale,

d(2 l )
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|e|#mf

16" 3v2 =⇒ d(2 l )
e � 2.5× 10! 27 eácm. (5)

One observes thatd(2 l )
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for
d(2 l )

q [13].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,
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with explicit dependence on the UV scale" UV . If this
scale is identiÞed with ÷" , then using the current bound
on the electron EDM, |de| < 1.05×10! 27ecm [8], we Þnd

÷" ! 50
&

÷ch TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion thatCP-odd corrections are lim-
ited by

# R!! (÷ch ) " 1.6× 10! 4. (9)

However, this conclusion can be relaxed in speciÞc UV
completions. As we discuss in the next subsection, the
logarithm ln( ÷" 2/m 2

h ) ∼ 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more signiÞcant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a speciÞc UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion $ with mass m" transforming as (1, 1, Q" )
under SU(3)×SU(2)×U(1), and a singlet öS with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,
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(
$ + L HS . (10)

The terms in L HS contain scalar kinetic terms and de-
scribe the Higgs-portal interaction between öS and H via
the following potential,

VHS = −µ2
H H   H + &H (H   H )4 +

1
2

öm2
S

öS2

+ AH   H öS − B öS +
&S

4
öS4 . (11)

CP-odd couplings of the Higgs proportional to the com-
bination A ÷YS are generated, while the term linear in öS
can always be adjusted to ensure� öS� = 0. We retain
only the photon contribution of the J "

µ vector current,
as the Z contribution is suppressed by the small value of
ge

V . After the breaking of SU(2)×U(1), the öS Þeld mixes
with what would be the SM Higgs bosonöh to produce
two mass eigenstatesh and S,
$ öh

öS

%
=

$
c# s#
−s# c#

% $
h
S

%
, tan 2' =

2Av
öm2

S − 2&H v2 ,

(12)
where s# (c#) stands for sin' (cos' ). Both mass eigen-
states inherit Higgs-like interactions with the SM Þelds
and couplings to $ fermions.

The dominant two-loop contribution to fermion EDMs
is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
of ÷YS, ' and m" ,

df = d(2 l )
f ×Q2

"
÷YS

v
m"

sin(2' )
)
g(m2

" /m 2
h ) − g(m2

" /m 2
S)

*
,

(13)
where the loop function is given by

g(z) =
z
2

+ 1

0
dx

1
x(1 − x) − z

ln
$

x(1 − x)
z

%
, (14)

which satisÞesg(1) ∼ 1.17 and g ∼
1
2 ln z for large z.

It is instructive to consider di $erent limits of
(13). When mh � m" , mS, to logarithmic accuracy
g(m2

" /m 2
h ) − g(m2

" /m 2
S) → 1

2 ln(m2
min /m 2

h ), where mmin
is the smaller of mS and m" . In this limit, the heavy
Þelds can be integrated out sequentially, withS and $
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The ensuing correction to the SM h ! !! width,
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takes the form
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where ASM (mh = 125 GeV) " AW + At " # 6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

$
ch % 5 TeV. Note that

since the CP -odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ "̃ 4).

A. EDM limit on contact operators

Current experiments [8–11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q) /v .

Thus it is useful to introduce the auxiliary quantity d(2 l )
f

that quantifies this two-loop benchmark EDM scale,

d(2 l )
f &

|e|#mf

16" 3v2 =' d(2 l )
e " 2.5 ( 10! 27 eácm. (5)

One observes that d(2 l )
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for

d(2 l )
q [13].
The CP -odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,

di = c̃h
|e|mf

4" 2"̃ 2
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= d(2 l )
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" 2

UV

m2
h
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, (7)

with explicit dependence on the UV scale " UV . If this
scale is identified with "̃ , then using the current bound
on the electron EDM, |de| < 1.05 ( 10! 27ecm [8], we find

"̃ ! 50
&

c̃h TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion that CP -odd corrections are lim-
ited by

# R!! (c̃h ) " 1.6 ( 10! 4. (9)

However, this conclusion can be relaxed in specific UV
completions. As we discuss in the next subsection, the
logarithm ln("̃ 2/m 2

h ) % 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more significant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a specific UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion $ with mass m" transforming as (1, 1, Q" )

under SU(3)( SU(2)( U(1), and a singlet Ŝ with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,

L SH " = $̄ i ! µ (i%µ # eQ" Aµ )$

+ $̄
'
m" + Ŝ(YS + i ! 5ỸS)

(
$ + L HS . (10)

The terms in L HS contain scalar kinetic terms and de-
scribe the Higgs-portal interaction between Ŝ and H via
the following potential,

VHS = # µ2
H H †H + &H (H †H )4 +

1

2
m̂2

SŜ2

+ AH †H Ŝ # B Ŝ +
&S

4
Ŝ4 . (11)

CP -odd couplings of the Higgs proportional to the com-
bination AỸS are generated, while the term linear in Ŝ
can always be adjusted to ensure )Ŝ* = 0. We retain
only the photon contribution of the J "

µ vector current,
as the Z contribution is suppressed by the small value of
ge

V . After the breaking of SU(2)( U(1), the Ŝ field mixes

with what would be the SM Higgs boson ĥ to produce
two mass eigenstates h and S,
$

ĥ
Ŝ

%
=

$
c# s#

# s# c#

% $
h
S

%
, tan 2' =

2Av
m̂2

S # 2&H v2 ,

(12)
where s# (c#) stands for sin ' (cos ' ). Both mass eigen-
states inherit Higgs-like interactions with the SM fields
and couplings to $ fermions.
The dominant two-loop contribution to fermion EDMs

is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
of ỸS , ' and m" ,

df = d(2 l )
f ( Q2

" ỸS
v

m"
sin(2' )

)
g(m2

" /m 2
h ) # g(m2
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,

(13)
where the loop function is given by

g(z) =
z
2

+ 1

0
dx

1

x(1 # x) # z
ln

$
x(1 # x)

z

%
, (14)

which satisfies g(1) % 1.17 and g % 1
2 ln z for large z.

It is instructive to consider di$erent limits of
(13). When mh + m" , mS , to logarithmic accuracy
g(m2

" /m 2
h ) # g(m2

" /m 2
S) ! 1

2 ln(m2
min /m 2

h ), where mmin
is the smaller of mS and m" . In this limit, the heavy
fields can be integrated out sequentially, with S and $
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FIG. 1. The e! ective increase in the diphoton rate as a function of the electron EDM coming from a coupling of the Higgs
to Fµ ! ÷F µ ! . The black dashed lines show the relationship in the case of the contact operator hFµ ! ÷F µ ! simply cut o ! at the
scales" UV = 200 GeV and 1 TeV. The solid lines show the relationship in the case of a scalar singlet, S, nearly degenerate
with the Higgs coupled to a VL fermion, ! . We choose a splitting between mS and mh of # M = 1 GeV (left panel) and
3 GeV (right panel) and a CP -odd Yukawa coupling of the singlet to the VL fermions of ÷YS = 2. The curve on the left of each
panel (green) is for a mixing angle " = 0 .1 and that on the right of each panel (blue) for " = #/ 4. The dotted lines show the
value of de implied for the two mixing angles for m" = 105 GeV and 300 GeV. Values of the electron EDM that are excluded
experimentally, de > 1.05 ! 10! 27 e cm, are in the shaded region. We observe that the degenerate scalar allows for a sizable
apparent increase in the Higgs diphoton rate in the CP -odd channel while not conßicting with the electron EDM limit, unlike
the simple contact operator case.

2. Full VL generation with CP -violating Higgs couplings.

Another simple UV completion is a full VL generation
of SM-like ÞeldsER ! (1, 1, " 1) and LL ! (1, 2, " 1/2),
with their mirror image Þelds EL and LR ,

" L EL # ( øEL , øLL )
�

ME y1H

y2H
!

ML

��
ER
LR

�
+ h .c. (25)

Every entry in this mass matrix, ME (L ) , y1(2) , can be
complex. However, there is only one physicalCP -odd
phase combination that cannot be removed by a Þeld
redeÞnition ! ! E + ! L " ! 1 " ! 2, which will appear
in Higgs-fermion CP -odd vertices. For the purposes of
calculation, it is more convenient to switch to the mass
eigenstate basis for theQ = 1 fermions (we denote the
massesm1 and m2), related to the original basis (25) by
a unitary rotation of the left- and right-handed Þelds.

�
ME y1v/

$
2

y2v/
$

2 ML

�
=

�
cos"L sin"L e

i ! L

" sin"L e
" i ! L cos"L

��
m1 0
0 m2

��
cos"R " sin"R e

" i ! R

sin"R e
i ! R cos"R

�
. (26)

In the mass eigenstate basis, the Higgs Þelds develops the following couplings to the#1 and #2 fermions,

L =
h

2v
m1

ø#1L

�
1 " cos(2"L ) cos(2"R ) "

m2

m1
e

" i ( ! L " ! R ) sin(2"L ) sin(2"R )
�

#1R (27)

+
h

2v
m2

ø#2L

�
1 " cos(2"L ) cos(2"R ) "

m1

m2
e

i ( ! L " ! R ) sin(2"L ) sin(2"R )
�

#2R + h .c. + á á á

The ellipsis denotes the o! -diagonal h ø#1#2 couplings,
which will not a ! ect the EDMs or Higgs decay phe-
nomenology within our approximations. The CP -odd
vertices from this Lagrangian can now be inserted di-

rectly into the two-loop formulae,

d
h"
e = d

(2 l )
e %sin(! L " ! R ) sin(2"L ) sin(2"R )

%
m1m2

m
2
h

�
g(z1)
z1

"
g(z2)
z2

�
, (28)
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SU(2) singlet Psi is charged under the SM U(1). Scalar mixes with 
the Higgs:  
 
 
The scalar eigenstates are given by  
 
 
The EDM result is given by contributions from both scalar mass 
eigenstates,  
 

2

The ensuing correction to the SMh ! !! width,
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takes the form
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where ASM(mh = 125 GeV) " AW + At " # 6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

$
ch % 5 TeV. Note that

since the CP-odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ ÷" 4).

A. EDM limit on contact operators

Current experiments [8Ð11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q)/v .

Thus it is useful to introduce the auxiliary quantity d(2l )
f

that quantiÞes this two-loop benchmark EDM scale,

d(2l )
f &

|e|#mf

16" 3v2
=' d(2l )

e " 2.5 ( 10−27 eácm. (5)

One observes thatd(2l )
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for
d(2l )

q [13].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,

di = ÷ch
|e|mf

4" 2÷" 2
ln

$
" 2
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m2
h

%
(6)

= d(2l )
f (

÷ch

#/ (4" )
(

v2

÷" 2
ln

$
" 2
UV

m2
h

%
, (7)

with explicit dependence on the UV scale" UV. If this
scale is identiÞed with ÷" , then using the current bound
on the electron EDM, |de| < 1.05( 10−27ecm [8], we Þnd

÷" ! 50
&

÷ch TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion thatCP-odd corrections are lim-
ited by

# R!! (÷ch ) " 1.6 ( 10−4. (9)

However, this conclusion can be relaxed in speciÞc UV
completions. As we discuss in the next subsection, the
logarithm ln( ÷" 2/m 2

h ) % 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more signiÞcant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a speciÞc UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion $ with mass m" transforming as (1, 1, Q" )
under SU(3)( SU(2)( U(1), and a singlet öS with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,

L SH " = ø$ i ! µ (i%µ # eQ" Aµ )$

+ ø$
'
m" + öS(YS + i ! 5

÷YS)
(

$ + L HS . (10)

The terms in L HS contain scalar kinetic terms and de-
scribe the Higgs-portal interaction between öS and H via
the following potential,

VHS = # µ2
H H   H + &H (H   H )4 +

1
2

öm2
S

öS2

+ AH   H öS # B öS +
&S

4
öS4 . (11)

CP-odd couplings of the Higgs proportional to the com-
bination A ÷YS are generated, while the term linear in öS
can always be adjusted to ensure) öS* = 0. We retain
only the photon contribution of the J "

µ vector current,
as the Z contribution is suppressed by the small value of
ge

V . After the breaking of SU(2) ( U(1), the öS Þeld mixes
with what would be the SM Higgs bosonöh to produce
two mass eigenstatesh and S,
$ öh

öS

%
=

$
c# s#

# s# c#

% $
h
S

%
, tan 2' =

2Av
öm2

S # 2&H v2
,

(12)
where s# (c#) stands for sin' (cos' ). Both mass eigen-
states inherit Higgs-like interactions with the SM Þelds
and couplings to $ fermions.

The dominant two-loop contribution to fermion EDMs
is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
of ÷YS, ' and m" ,

df = d(2l )
f ( Q2
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where the loop function is given by

g(z) =
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0
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ln
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%
, (14)

which satisÞesg(1) % 1.17 and g % 1
2 ln z for large z.

It is instructive to consider di $erent limits of
(13). When mh + m" , mS, to logarithmic accuracy
g(m2

" /m 2
h ) # g(m2

" /m 2
S) ! 1

2 ln(m2
min/m 2

h ), where mmin

is the smaller of mS and m" . In this limit, the heavy
Þelds can be integrated out sequentially, withS and $
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The ensuing correction to the SMh ! !! width,
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where ASM (mh = 125 GeV) " AW + At " # 6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

$
ch % 5 TeV. Note that

since the CP-odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ ÷" 4).

A. EDM limit on contact operators

Current experiments [8Ð11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q) /v .

Thus it is useful to introduce the auxiliary quantity d(2 l )
f

that quantiÞes this two-loop benchmark EDM scale,

d(2 l )
f &

|e|#mf

16" 3v2 =' d(2 l )
e " 2.5 ( 10! 27 e · cm. (5)

One observes thatd(2 l )
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for
d(2 l )

q [13].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,
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|e|mf
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with explicit dependence on the UV scale" UV . If this
scale is identiÞed with ÷" , then using the current bound
on the electron EDM, |de| < 1.05( 10! 27ecm [8], we Þnd

÷" ! 50
&

÷ch TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion thatCP-odd corrections are lim-
ited by

# R!! (÷ch ) " 1.6 ( 10! 4. (9)

However, this conclusion can be relaxed in speciÞc UV
completions. As we discuss in the next subsection, the
logarithm ln( ÷" 2/m 2

h ) % 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more signiÞcant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a speciÞc UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion $ with mass m" transforming as (1, 1, Q" )
under SU(3)( SU(2)( U(1), and a singlet öS with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,

LSH " = ø$ i ! µ (i%µ # eQ" Aµ )$

+ ø$
'
m" + öS(YS + i ! 5 ÷YS)

(
$ + LHS . (10)

The terms in LHS contain scalar kinetic terms and de-
scribe the Higgs-portal interaction between öS and H via
the following potential,

VHS = # µ2
H H   H + &H (H   H )4 +

1
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öm2
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öS2

+ AH   H öS # B öS +
&S

4
öS4 . (11)

CP-odd couplings of the Higgs proportional to the com-
bination A ÷YS are generated, while the term linear in öS
can always be adjusted to ensure) öS* = 0. We retain
only the photon contribution of the J "

µ vector current,
as the Z contribution is suppressed by the small value of
ge

V . After the breaking of SU(2) ( U(1), the öS Þeld mixes
with what would be the SM Higgs bosonöh to produce
two mass eigenstatesh and S,
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(12)
where s# (c#) stands for sin' (cos' ). Both mass eigen-
states inherit Higgs-like interactions with the SM Þelds
and couplings to $ fermions.

The dominant two-loop contribution to fermion EDMs
is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
of ÷YS, ' and m" ,
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where the loop function is given by
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which satisÞesg(1) % 1.17 and g % 1
2 ln z for large z.

It is instructive to consider di $erent limits of
(13). When mh + m" , mS, to logarithmic accuracy
g(m2
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h ) # g(m2

" /m 2
S) ! 1

2 ln(m2
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h ), where mmin
is the smaller of mS and m" . In this limit, the heavy
Þelds can be integrated out sequentially, withS and $
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where ASM (mh = 125 GeV) " AW + At " # 6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

$
ch % 5 TeV. Note that

since the CP-odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ ÷" 4).

A. EDM limit on contact operators

Current experiments [8Ð11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q) /v .

Thus it is useful to introduce the auxiliary quantity d(2 l )
f

that quantiÞes this two-loop benchmark EDM scale,

d(2 l )
f &

|e|#mf

16" 3v2 =' d(2 l )
e " 2.5 ( 10! 27 eácm. (5)

One observes thatd(2 l )
e has already been surpassed by

the current electron EDM limits [8, 9], with the mercury
[10] and neutron [11] EDMs not lagging far behind for
d(2 l )

q [13].
The CP-odd Higgs operator (2) generates fermionic

EDMs via a Higgs-photon loop,
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with explicit dependence on the UV scale" UV . If this
scale is identiÞed with ÷" , then using the current bound
on the electron EDM, |de| < 1.05( 10! 27ecm [8], we Þnd

÷" ! 50
&

÷ch TeV. (8)

Translating this to the Higgs diphoton branching ratio
results in the conclusion thatCP-odd corrections are lim-
ited by

# R!! (÷ch ) " 1.6 ( 10! 4. (9)

However, this conclusion can be relaxed in speciÞc UV
completions. As we discuss in the next subsection, the
logarithm ln( ÷" 2/m 2

h ) % 10 cannot generally be stretched
all the way to 50 TeV, as the loops of VL charged particles
provide a much lower cuto$, while certain degeneracies
may provide more signiÞcant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a speciÞc UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion $ with mass m" transforming as (1, 1, Q" )
under SU(3)( SU(2)( U(1), and a singlet öS with a Higgs-
portal interaction with the Higgs doublet H [14], leads
to the following Lagrangian,
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where s# (c#) stands for sin' (cos' ). Both mass eigen-
states inherit Higgs-like interactions with the SM Þelds
and couplings to $ fermions.

The dominant two-loop contribution to fermion EDMs
is well-known [15], and specializing to our case we arrive
at the following result for the electron EDM as a function
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is the smaller of mS and m" . In this limit, the heavy
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where ASM (mh = 125 GeV) " AW + At " # 6.5 is pro-
portional to the SM amplitude [12]. The deviations in
the width are of O(1) for " /

$
ch % 5 TeV. Note that

since the CP -odd operator does not interfere with the
SM amplitude, the corresponding correction to the dipho-
ton branching ratio is necessarily positive and scales as
O(1/ "̃ 4).

A. EDM limit on contact operators

Current experiments [8–11] already probe the EDMs
of elementary particles at a level roughly commensurate
with two-loop electroweak diagrams [13], with the chi-
rality of light particles protected by factors of me(q) /v .

Thus it is useful to introduce the auxiliary quantity d(2 l )
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that quantifies this two-loop benchmark EDM scale,
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with explicit dependence on the UV scale " UV . If this
scale is identified with "̃ , then using the current bound
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Translating this to the Higgs diphoton branching ratio
results in the conclusion that CP -odd corrections are lim-
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However, this conclusion can be relaxed in specific UV
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logarithm ln("̃ 2/m 2
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may provide more significant qualitative changes to the
implications of EDM limits.

B. UV complete examples with VL fermions

1. Singlet scalar with pseudoscalar coupling to VL fermions

We will now consider a specific UV completion which
allows the full 2-loop function to be taken into account
for the electron EDM. The addition of a (hyper)charged
VL fermion $ with mass m" transforming as (1, 1, Q" )

under SU(3)( SU(2)( U(1), and a singlet Ŝ with a Higgs-
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ĥ
Ŝ
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the following potential,

VHS = # µ2
H H   H + &H (H   H )4 +

1

2
m̂2

SŜ2
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can always be adjusted to ensure )Ŝ* = 0. We retain
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Þrst, and h second. The Þrst step is simpliÞed by the
use of the chiral anomaly equation for! , " µ

ø!# µ #5! =
2i ø!# 5! + !

8" Q2
# Fµ$ ÷Fµ$ . This leads to the following iden-

tiÞcation,
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Apart from a smaller value for the logarithmic cuto" ,
the result in this limit di " ers little from the contact op-
erator case above. Even if the value of the logarithm is
not enhanced, ln(m2

min /m 2
h ) " O(1), the corrections to

the Higgs diphoton rate will be limited to at most the
sub-percent level unless a Þne-tuned cancellation ofde is
arranged with some otherCP-odd source.

We now consider a di" erent near-degenerate limit,
|mh # mS| $ mh , which turns out to be more inter-
esting as it allows the EDM constraints to be bypassed.
If the di " erence between the masses is small, we can ap-
proximate

sin(2&)(m2
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h ) % 2Av, (16)

and the EDM becomes
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where in the Þnal step we made use of the largem# limit.
The limiting case (17) receives no logarithmic enhance-

ment. Moreover, the value of the A parameter can be
very small, comparable to the mass splitting betweenh
and S or less. An O(1 GeV) mass splitting would nat-
urally place Av2/ (m2

h m# ) in the O(10" 2 # 10" 3) range,
suppressing the EDM safely below the bound.

At the same time, as explicitly shown in Ref. [5], mod-
iÞcations to the h % ## rate can be signiÞcant, and
enhancement can come from theFµ$ ÷F µ$ amplitude. Un-
like corrections to the Fµ$F µ$ amplitudes that can en-
hance or suppress the e" ective rate, the CP-odd chan-
nel always adds toR%%. Assuming that the mass di" er-
ence between the singlet and the Higgs is small enough
that they cannot be separately resolved (which requires
|mS # mh | "< 3 GeV with current statistics [5]), the ap-
parent increase in the diphoton rate in this model is
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independent expression,
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The rate for the weak eigenstateöS to decay to two pho-
tons via its pseudoscalar coupling to the VL fermions is
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with
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For large m# the apparent diphoton increase can then be
expressed as
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#

'
÷YS

2

( 2 #
150 GeV

m#

$ 2
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A sizable increase in the apparent diphoton rate is seen
to require rather large Yukawa couplings or light VL
fermions. The VL leptons must be heavier than 105 GeV
to avoid limits from LEP. Their decay channels are fairly
model-dependent but they are well within the reach of
the LHC if they are at all relevant for the h % ## rate.
For more discussion on experimental searches for such
VL fermions, see [5].

In Fig. 1 we show the relationship between the elec-
tron EDM and the enhancement to the Higgs diphoton
rate that comes from the operatorhFµ$ ÷F µ$ for both the
contact operator and nearly degenerate singlet cases. In
the case of the contact operator, we show two cuto" s,
! UV = 200 GeV and 1 TeV. As seen in Sec. 2 A, it is
apparent that in this simple situation, any appreciable
increase in the h % ## rate must be accompanied by
a value of the electron EDM that is in conßict with the
present experimental limit. We also show the relationship
between Re!

%% and de in the singlet case for two values
of the mixing angle, & = 0 .1 and %/ 4, Þxing the pseu-
doscalar Yukawa to ÷YS = 2 and choosing Q# = 1. Dif-
ferent values ofRe!

%%and de then correspond to di" erent
values ofm# . It is now apparent that a sizable increase in
the e" ective diphoton rate can be obtained in this model
without inducing a value of the electron EDM that is
presently excluded, demonstrating a UV-completion of
the e" ective interaction that evades the constraints im-
plied by a simple analysis of this contact operator. The
reason that the EDM constraints are evaded in this case
is clear: mixing of the two Þelds,öh and öS, due to the
small mass di" erence can proceed rather e$ ciently even
with a small value of A, while the EDM loop diagrams
do not enjoy the same resonant enhancement. In this
model, for ÞxedRe!

%%, de increases with increasing%M
and sin 2&. The rough upper limit on %M of around
3 GeV with current data implies an upper limit on de of
" 10" 28 e cm for Re!

%%! 1.5 # 2. Separately resolving a
degeneracy near 125 GeV or limiting the size of a poten-
tial mass splitting with more data clearly has important
implications for EDM searches.
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presently excluded, demonstrating a UV-completion of
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reason that the EDM constraints are evaded in this case
is clear: mixing of the two Þelds,öh and öS, due to the
small mass di" erence can proceed rather e$ ciently even
with a small value of A, while the EDM loop diagrams
do not enjoy the same resonant enhancement. In this
model, for ÞxedRe!
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The version of the model that allows escaping EDM constraints 
involves nearly degenerate scalars.  
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Conclusions&

1.! CKM phase gives too small an EDM, and before experimentally 
we cross 10^-29 cm, we can be sure that we are probing new 
physics.  

2.! EDMs generated by theta term is too large – one needs to remove 
theta from the theory by some adjustment mechanism. Chiral loop 
and QCD SR give close estimates for dn(theta). 

3.! Neither ( QCD nor ) CKM look as viable sources for BAU. Likely, 
there are more sources of CP breaking but its scale is unknown.  

4.! Main uncertainty in the EDM business comes not from QCD or 
nuclear physics, but from us not knowing where New Physics is 
and how it looks like. But even if it is very heavy – I argue – 
EDMs are capable of probing scales as high as several 100 TeV. 
(Example = “minimally unnatural SUSY”) 

5.! CP-violating channel works to enhance R%%, but avoiding the 
electron EDM constraints is a challenge.  

 


