




2 CP Violating Phases in the MSSM

Before discussing the relaxation mechanism, let us first review the origin of

the CP violating phases in the MSSM. Since we are mainly interested in the

flavor conserving phases we will work under the universality anzatz. With

universality, four additional phases appear beyond the Kobayashi-Maskawa

phase and QCD vacuum angle of the standard model. The first arises in the

superpotential Higgs Dirac mass parameter µ,

W = µHuHd (1)

The remaining phases arise in the coefficients of the soft SUSY breaking

parameters mλ, A, and m2
12,

L = −1

2
mλλλ−A

(
huQHuū− hdQHdd̄− heLHdē

)
−m2

12HuHd + h.c. (2)

where λ are the gauginos, and hi the Yukawa couplings. Only two of the

four phases are physical CP violating phases [?]. This is most readily seen

by noticing that in the absence of non-gauge interactions there are two addi-

tional flavor conserving global U(1) symmetries in the MSSM, a Peccei-Quinn

and R Peccei-Quinn symmetry [?]. Selection rules for the symmetries may

therefore be used if the dimensionful parameters in the couplings given above

which break the symmetries are treated as spurions with charges assigned to

compensate those of the fields, as given in table 1. The selection rules limit

the combinations of dimensionful parameters that can appear in a physical

amplitude. Treating the dimensionful parameters as insertions, these are

mλµ(m2
12)

∗, Aµ(m2
12)

∗, A∗mλ (3)

Among these there are two linearly independent phases which may be taken

to be Arg(Aµ(m2
12)

∗) and Arg(A∗mλ).

2

L = −1
2
mλλλ−A

(
huQHuū− hdQHdd̄− heLHdē

)
− µBHuHd + h.c.
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L = −1
2
mλλλ− µBHuHd

−A
(
huQHuū− hdQHdd̄− heLHdē

)
+ h.c.

U(1)PQ U(1)R−PQ

mλ 0 −2
A 0 −2
µB −2 0
µ −2 2

Hu 1 0
Hd 1 0
Qū −1 2
Qd̄ −1 2
Lē −1 2

Table 1: Peccei-Quinn and R charges of spurions and fields.

3 Relaxation of the Phases

In order to motivate the relaxation solution to the SUSY CP problem it is

instructive to review the role of nonlinearly realized global symmetries in this

context. The non-supersymmetric standard model has, at the renormalizable

level, two accidental global symmetries, namely baryon and lepton number.

If these symmetries are realized nonlinearly there are Goldstone bosons which

couple to the associated currents. However, if the scale of spontaneous sym-

metry breaking is large enough, the Goldstone bosons decouple and there

are no effects at low energy [16]. The two Higgs doublet model has, in the

absence of an m2
12HuHd term, an additional global Peccei-Quinn symmetry

at the classical level [11]. This symmetry has a quantum mechanical anomaly

with respect to QCD, so θ̄QCD shifts under a Peccei-Quinn transformation.

If this symmetry is realized in the Goldstone mode, i.e. Arg(m2
12) is a dy-

namical variable, the associated pseudo-Goldstone boson (the axion) receives

a potential from the explicit breaking due to the anomaly. It is technically

natural that this potential is an extremum at points of enhanced symme-

try. This is because if the symmetry is realized (nonlinearly or otherwise) in

3
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O Experiments Λi(TeV)

OWB EWPT [55] 12.6 [56]

OhW ,OhB Higgs decays !
OW CP-even TGCs [50, 51] 1

OW̃ CP-odd TGCs [53, 54]/electron EDM [55] 0.5/37

OhW̃ CP-odd TGCs [53, 54]/electron EDM [55] 0.7/24

OhB̃ CP-odd TGCs [53, 54]/electron EDM [55] 0.3/47

OW̃B CP-odd TGCs [53, 54]/electron EDM [55] 0.3/34

Table 1. Current experimental bounds on operator coefficients at 90% CL. The operator coefficient ai is

bounded by the interval [−1/Λ2
min, 1/Λ2

max]. The Λi (in TeV) shown in the table is the average of Λmin and

Λmax.

3.2 Correlation between CP-odd and CP-even observables

Now we want to explore possible correlations between CP-even and odd observables. Firstly, if the
charged matter is vector-like, e.g., two Weyl fermions married by a Dirac mass which does not depend
on the electroweak symmetry breaking, one can always rotate away the phases by field redefinitions.
Thus they could lead to a change in CP-even TGCs, which as we discussed, is only weakly bounded
and difficult to measure. If the charged matter is purely chiral with mass purely from the Higgs VEV,
e.g., fourth-generation leptons, there could be additional CKM-like phases. For colorless chiral matter
with mass around weak scale, they will decrease the branching fraction of Higgs decaying to diphotons,
leading to a rate that is at least one sigma away from the best fit values of current Higgs fit.

The most interesting case is vector-like matter which obtain part of their masses from electroweak
symmetry breaking. The general mass matrix, e.g., for fermions, is

LM = −
(
ψ+Q χ+Q

)


 mψ
yv√

2
ycv√

2
mχ




(

ψ−Q

χ−Q

)
+ cc, (3.6)

with the Higgs VEV given by 〈H〉 = v/
√

2 = 174 GeV and ψ, χ are Weyl fermions. There is one
physical phase, φ = arg

(
m∗

ψm∗
χyyc

)
, that cannot be rotated away by field redefinitions. There

is an analogous mass matrix for scalars, e.g., the left- and right- handed stau mass mixing matrix
with the diagonal entries the soft masses and off-diagonal entries A-terms, where the physical phase
is arg

(
A∗m2

s

)
. With insertion of the physical phase, the diagrams generating CP-even operators,

OW ,OhW ,OhB lead to OhW̃ ,OhB̃ . Notice that WWW̃ operator is not generated at one-loop. The
reason is that W ’s, Z only couple to fermion of the same chirality. Without introducing dependence
on the Higgs field, as each mass flips chirality, the diagram is always proportional to the even powers
of |mψ|2 or |mχ|2, which are always real. WWW̃ operator could be generated at the two-loop order
or similar to the Weinberg operator GGG̃, WWW̃ receives a finite threshold correction from a heavy
SU(2)W charged particle with a non-zero EDM de and mass m check the numerics here.

aW̃ =
g2

32π2

de

m
. (3.7)

Constraint on aW̃ translates into de
m < 3×10−20 e·cm

1 TeV .
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Figure 10. Upper: “vector-like lepton” model; Lower: “wino-Higgsino” model. N = 1, mψ = mχ, y = yc in

all these plots. φ =arg(yycm∗
ψm∗

χ). The horizontal and vertical axes correspond to the light and heavy mass

eigenvalues. The solid purple line is the current EDM constraint de/e = 1.05× 10−27 cm with the grey region

excluded; the dashed purple line is the projected constraint de/e = 10−28 cm. The green lines denote the

diphoton enhancement µγγ .

calculation, it can also be understood as a consequence of the fact that the arg detM coupling arises
from an anomalous rotation of fermion fields, whereas scalars have no anomalies. However, if there
is a pseudoscalar particle in the spectrum that can run in the two-loop EDM diagram in place of the
Higgs, or if CP-violation leads the Higgs to have a small pseudoscalar-like coupling to the electron
(e.g. by mixing with a pseudoscalar), there will still be a two-loop EDM [107]. Thus, in the case of
charged scalars, the Higgs CP problem would be less robust: if all pseudoscalars are heavy, the EDMs
can be rather small. (There are other difficulties for such an interpretation of an increased h → γγ
rate, as new charged scalars typically have vacuum stability problems [40, 46], although there is still
viable parameter space for quite light scalars [55].)
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FIG. 1. Example of diagrams corresponding to amplitudes with different orderings.

This asymmetry is accessible via a Dalitz plot analysis. While the CP asymmetry constructed

in this scenario can be large when considered at specific points in phase space, the asymmetry

in the total number of events suffered a suppression when the final state particles 1 and 2

are nearly degenerate. This suppression could be eliminated by applying a phase space

weighting, which amounted to constructing the asymmetry

APS wgt
CP =

(
N(q2

13 > q2
23)−N(q2

13 < q2
23)

)
−

(
N(q2

13 > q2
23)−N(q2

13 < q2
23)

)

N + N
, (3)

where q2
ij = (pi + pj)2. Still, the major practical problem with this method is that in many

cases, such as when the events contain missing energy, some of the final state particles are

not detected and these asymmetries cannot be reconstructed. Additional complications arise

when the particles involved are not scalars. In particular, since CP violating observables are

sensitive only to interference terms, it is possible to incur chiral suppression in observables.

This restriction places non-trivial limits on the set of observables sensitive to new CP-odd

phases.

In this paper, we generalize the results of [31] in several ways. We explore alternative

observables based on momentum asymmetries which are applicable in cases where X0
3 escapes

detection. We also study the conditions under which the chiral suppression can be reduced

and discuss the prospects for observing CP asymmetries in supersymmetric models. Finally,

we generalize the observable to the case where there are two different intermediate particles.

As an example, we consider CP violation in decays of a heavy neutrino species via W and

Z bosons.

The main observation is as follows. When all the kinematic information is available,

momentum asymmetries can probe CP violation. The main problem is that, in realistic

scenarios, some kinematic information is not available generically, and in particular, there

3

I. INTRODUCTION

The Large Hadron Collider (LHC) experiments are accumulating data at an exceptional

rate. They will hopefully make groundbreaking discoveries of new particles that will alter our

picture of physics at the TeV scale and beyond. In order to fully appreciate the consequences

of these results, the properties of all of the new particles must be determined. A lot of

effort has been spent devising ways to determine the masses (see e.g. [1–13]) and spins (see

e.g. [7, 14–23]) of particles at the LHC and such analyses will surely be the first on our road

to understanding any new physics. Once a large amount of data is accumulated and these

properties are at least somewhat understood, the next step is to determine more challenging

properties such as couplings, flavor structure, and CP violating phases. The determination

of the latter has recently attracted increased attention [24–34]. In this paper, we study new

techniques which can make the direct observation of CP violation at the LHC feasible.

With complete generality, CP violation arises when there are complex phases in the

Lagrangian that cannot be rotated away by field redefinitions. We call such phases CP-odd

phases and the goal is to measure them as accurately as possible. Given a new CP-odd

phase, we can find a sensitive process and construct a CP-violating asymmetry

ACP =
N −N

N + N
, (1)

where N and N are the number of observed events from the process and its CP conjugate

respectively. Observation of ACP "= 0 requires interference between amplitudes with different

CP-odd and CP-even phases. The CP-even phases, which do not change sign under CP, can

arise from the dynamics of the process. Note that if the momenta, and possibly the helicities,

of the final state particles can be determined, then it is possible to avoid the condition of

requiring amplitudes with different CP-even phases by looking at triple product asymmetries

(see e. g. [26, 35–43]).

In Ref. [31], a new source of CP-even phases was introduced. It arises in three-body

decays that can proceed with two different final state orderings via an on-shell resonance

having a finite width. In particular, a toy model involving only scalars was considered. The

process studied was the decay X0
0 → X±

1 X∓
2 X0

3 via a resonance Y ± as illustrated in Fig. 1.

The weak phase arises from the couplings of Y ± to the outgoing particles. The novelty is in

the CP-even phase that arises from the different virtuality of Y ± in the two diagrams. Thus,

once the width of Y ± is taken into account a differential CP asymmetry can be generated

Adiff
CP =

dΓ/dq2
13dq2

23 − dΓ/dq2
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23
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FIG. 1. Example of diagrams corresponding to amplitudes with different orderings.

This asymmetry is accessible via a Dalitz plot analysis. While the CP asymmetry constructed

in this scenario can be large when considered at specific points in phase space, the asymmetry

in the total number of events suffered a suppression when the final state particles 1 and 2

are nearly degenerate. This suppression could be eliminated by applying a phase space

weighting, which amounted to constructing the asymmetry

APS wgt
CP =

(
N(q2

13 > q2
23)−N(q2

13 < q2
23)

)
−

(
N(q2

13 > q2
23)−N(q2

13 < q2
23)

)

N + N
, (3)

where q2
ij = (pi + pj)2. Still, the major practical problem with this method is that in many

cases, such as when the events contain missing energy, some of the final state particles are

not detected and these asymmetries cannot be reconstructed. Additional complications arise

when the particles involved are not scalars. In particular, since CP violating observables are

sensitive only to interference terms, it is possible to incur chiral suppression in observables.

This restriction places non-trivial limits on the set of observables sensitive to new CP-odd

phases.

In this paper, we generalize the results of [31] in several ways. We explore alternative

observables based on momentum asymmetries which are applicable in cases where X0
3 escapes

detection. We also study the conditions under which the chiral suppression can be reduced

and discuss the prospects for observing CP asymmetries in supersymmetric models. Finally,

we generalize the observable to the case where there are two different intermediate particles.

As an example, we consider CP violation in decays of a heavy neutrino species via W and

Z bosons.

The main observation is as follows. When all the kinematic information is available,

momentum asymmetries can probe CP violation. The main problem is that, in realistic

scenarios, some kinematic information is not available generically, and in particular, there

3
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I. INTRODUCTION
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picture of physics at the TeV scale and beyond. In order to fully appreciate the consequences

of these results, the properties of all of the new particles must be determined. A lot of
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e.g. [7, 14–23]) of particles at the LHC and such analyses will surely be the first on our road

to understanding any new physics. Once a large amount of data is accumulated and these
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With complete generality, CP violation arises when there are complex phases in the

Lagrangian that cannot be rotated away by field redefinitions. We call such phases CP-odd

phases and the goal is to measure them as accurately as possible. Given a new CP-odd

phase, we can find a sensitive process and construct a CP-violating asymmetry

ACP =
N −N

N + N
, (1)

where N and N are the number of observed events from the process and its CP conjugate

respectively. Observation of ACP "= 0 requires interference between amplitudes with different

CP-odd and CP-even phases. The CP-even phases, which do not change sign under CP, can

arise from the dynamics of the process. Note that if the momenta, and possibly the helicities,

of the final state particles can be determined, then it is possible to avoid the condition of

requiring amplitudes with different CP-even phases by looking at triple product asymmetries

(see e. g. [26, 35–43]).

In Ref. [31], a new source of CP-even phases was introduced. It arises in three-body

decays that can proceed with two different final state orderings via an on-shell resonance

having a finite width. In particular, a toy model involving only scalars was considered. The

process studied was the decay X0
0 → X±

1 X∓
2 X0

3 via a resonance Y ± as illustrated in Fig. 1.

The weak phase arises from the couplings of Y ± to the outgoing particles. The novelty is in

the CP-even phase that arises from the different virtuality of Y ± in the two diagrams. Thus,

once the width of Y ± is taken into account a differential CP asymmetry can be generated

Adiff
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dΓ/dq2
13dq2
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While a fully realistic simulation should take these effects into account, we do not expect

them to have a significant impact on our results as we found the effects of energy smearing

and combinatorics to be rather small.

A. Resonant production

The simplest possibility is that the mother particle is produced as a resonance. To study

this case, we add a vertex

L ⊃− λX0
0qq

′ , (11)

and we analyze the process

pp→ X0
0 → X+

1 X−
1 X0

3 . (12)

In this case, the X0
3 is not detected and its momentum cannot be determined without

further information about the spectrum of the model. We can, however, approximate the

asymmetry (9) using information from only the X1 particles. In the parton center of mass

(CM) frame, X0
0 will be produced at rest. The boost from the parton rest frame to the

proton rest frame is to very good approximation longitudinal, so any transverse variables

can be compared on an event by event basis. Thus, we are led to examine a pT asymmetry

[26, 46]

ApT
CP =

N(pT,− > pT,+)−N(pT,+ > pT,−)

N
. (13)

Using our representative numbers, eq. (7), we find that the asymmetry of eq. (13) is given

by

ApT
CP = 0.209 , (14)

indicating a suppression of about a factor of 1/2 compared to eq. (10). The result is consistent

with a numerical calculation in the rest frame of the X0.

If we attempted to consider an asymmetry using the full momentum of the charged

particles, then the information in the z direction would be washed out by the longitudinal

boost. The momentum asymmetry

Ap
CP =

N(p− > p+)−N(p+ > p−)

N
, (15)

should be comparable but smaller than eq. (13). This is indeed what we find:

Ap
CP = 0.140 . (16)

The amount of suppression is related to the longitudinal boost. We check this dependence

by varying the mass of X0, and plot the amount of suppression due to the boost in Fig. 4.
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FIG. 6. Decays of a neutralino through a charged Higgs. In this case, there are only two diagrams

for the decay.

for i = 1, 2, 3 and j = 1, 2. In order for the decay to be kinematically allowed, the hierarchy

must be at least

M1 ! 3
√
|µM2|. (22)

There are several diagrams for the process χ0
4 → χ±i χ∓j χ0

1, but we would like to focus on

the diagram mediated by the charged Higgs as illustrated in Fig. 6. We further assume that

the charged Higgs can decay on-shell in both cases, so that mH± ! 2
√
|µM2|. In principle,

there are also diagrams mediated by the neutral Higgses, the W , and the Z. Diagrams with

intermediate W and Z can be neglected since the W and Z are too light to decay on-shell

and thus the amplitudes are suppressed compared to the nearly on-shell amplitudes for the

Higgses. The lighter neutral Higgs and CP-odd Higgs will also generally be too light to

decay on-shell, but the heavy neutral Higgs will generally have a mass mH0 ∼ mH± . We

will, however, neglect all but the diagrams mediated by the charged Higgs for simplicity. If

other diagrams were included, then the more familiar type of strong phase would contribute

in the interference between these diagrams and the charged Higgs mediated ones.

Before performing some analytic and numerical calculations, we would like to get an

idea of how large the CP asymmetry can be in this case. To perform this estimate, we

take into account the three sources of suppression that the numerator has relative to the

denominator: the weak phase, the strong phase, and, in the integrated case, the required

phase space asymmetry. The CP odd effect is proportional to (A8), that is to |µbM2|. The

relevant dimensionless quantity is normalized to the mass of the decaying particle, that is

to some powers of M1. Taking b ∼M2
1 , which is equivalent to taking sinβ ∼ 1, we conclude

that this gives a suppression of

Adiff
CP ∝

|µM2|
M2

1

. (23)

12

µ(µB)∗m2

required by kinematics. The asymmetry is then proportional to the ratio of the width to

some combination of mass scales, with a logarithmic enhancement. The asymmetry is larger

for larger width.

In this section, we have worked with the simplest model that exhibits CP-violation where

the difference in strong phase between the two diagrams for the process is due to the difference

in virtuality of the off-shell particles. The model could be complicated by higher spin particles

or by other diagrams. Independent of these complications, we can say a few things about the

asymmetries. All of the asymmetries will of course be proportional to the sine of the weak

phase difference between the diagrams. The differential rate asymmetry due to the effects

described here will always vanish along the line q2
13 = q2

23. The integrated rate asymmetry

will always vanish if the phase space is symmetric about q2
13 = q2

23. By doing a weighted

integration over phase space, we can avoid this last constraint and enhance the asymmetry

in cases where the two charged particles in the final state are nearly degenerate.

Another possible complication that could arise occurs in the large width limit. We have

worked in the Breit-Wigner approximation, which will be valid in the new physics scenario

we consider below. If the intermediate resonance is broad, the Breit-Wigner approximation

breaks down. This does not alter the qualitative fact that the resonance virtuality leads to

a strong phase. We stress that this generic feature of unstable modes in any theory is the

crucial one for our purposes.

III. CP VIOLATION IN THE CHARGED HIGGS CHANNEL IN THE MSSM

We now turn to study how this new source of CP violation could be relevant to the

MSSM. The electroweak sector of the MSSM is described in Appendix A. That model is a

good starting point, since in the limit we are considering it contains only one CP-violating

phase, Im(µ∗bM∗
2 ), defined in (A8). Any CP violating observable must involve a process

that includes mixing between the Higgs and the electroweak sectors. It turns out that the

process

χ0
4 → χ±i χ∓j χ0

1, i "= j, (20)

is very instructive for studying the impact of the strong phases of interest. This process

necessarily involves mixing between the Higgs and electroweak sectors. Note that we must

be in the limit where the heaviest neutralino is sufficiently heavy that the decay (20) is

kinematically allowed. This only occurs when the χ0
4 is mostly Bino like and the Bino soft

mass M1 is large, that is

mχ0
4
∼M1 $ mχ0

i
, mχ±j

∼
√

|µM2| > mZ , (21)
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|µM2|. In principle,

there are also diagrams mediated by the neutral Higgses, the W , and the Z. Diagrams with

intermediate W and Z can be neglected since the W and Z are too light to decay on-shell

and thus the amplitudes are suppressed compared to the nearly on-shell amplitudes for the

Higgses. The lighter neutral Higgs and CP-odd Higgs will also generally be too light to

decay on-shell, but the heavy neutral Higgs will generally have a mass mH0 ∼ mH± . We

will, however, neglect all but the diagrams mediated by the charged Higgs for simplicity. If

other diagrams were included, then the more familiar type of strong phase would contribute

in the interference between these diagrams and the charged Higgs mediated ones.

Before performing some analytic and numerical calculations, we would like to get an

idea of how large the CP asymmetry can be in this case. To perform this estimate, we

take into account the three sources of suppression that the numerator has relative to the

denominator: the weak phase, the strong phase, and, in the integrated case, the required

phase space asymmetry. The CP odd effect is proportional to (A8), that is to |µbM2|. The
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the charged Higgs can decay on-shell in both cases, so that mH± ! 2
√
|µM2|. In principle,

there are also diagrams mediated by the neutral Higgses, the W , and the Z. Diagrams with

intermediate W and Z can be neglected since the W and Z are too light to decay on-shell

and thus the amplitudes are suppressed compared to the nearly on-shell amplitudes for the

Higgses. The lighter neutral Higgs and CP-odd Higgs will also generally be too light to

decay on-shell, but the heavy neutral Higgs will generally have a mass mH0 ∼ mH± . We

will, however, neglect all but the diagrams mediated by the charged Higgs for simplicity. If

other diagrams were included, then the more familiar type of strong phase would contribute

in the interference between these diagrams and the charged Higgs mediated ones.

Before performing some analytic and numerical calculations, we would like to get an

idea of how large the CP asymmetry can be in this case. To perform this estimate, we

take into account the three sources of suppression that the numerator has relative to the

denominator: the weak phase, the strong phase, and, in the integrated case, the required

phase space asymmetry. The CP odd effect is proportional to (A8), that is to |µbM2|. The
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1 Introduction

Mt̃L
σ (fb) N [t"+"−]

L = 300fb−1 (1 ab−1)
500 GeV 300 7300 (24000)

800 GeV 20 560 (1800)

1 TeV 4 120 (400)

1.2 TeV 1 30 (100)

Table 1. The production cross-section for t̃L t̃c
L is shown in the middle column. The branching ratio for the

reaction t̃→ t+Ña → t+ l+ + l−+Ñ1 was calculated using Ml̃ = 300 GeV, MÑ2
= 140 GeV, MÑ1

= 100 GeV,

and assuming that the gluino and squarks are sufficiently heavy to have little effect. (Under these assumptions

and wino/bino dominated Ñ2,1 the branching ratio for t̃ → tÑ2 is slightly less then 1/3 because of the top’s

mass, and those for Ñ2 → e+e−Ñ1 or µ+µ−Ñ1 are about 1/6 each.)

The recent announcement of the discovery of the Higgs particle by ATLAS and CMS represents
a triumphant milestone for fundamental physics [1, 2]. All eyes are now turned to examining the
properties of the Higgs in detail, looking for possible deviations from Standard Model (SM) behavior.
Indeed, in these early days, both ATLAS and CMS have an accumulating hint of an anomaly. While
σ × BR(h → ZZ∗) and σ × BR(h → WW ∗) seem compatible with the SM1, there appears to be a
significant enhancement in the diphoton channel σ×BR(h→ γγ), that may be as high as a factor of
2 above the SM expectation:

µγγ =
σ ×BR(h→ γγ)

σ ×BR(h→ γγ)SM
∼ 1.5− 2, (1.1)

µV V =
σ ×BR(h→ V V )

σ ×BR(h→ V V )SM
∼ 1. (1.2)

1The latter is admittedly an experimentally difficult channel. Note also that while CMS results hint to some deficit
in h→ V V , ATLAS shows a potential excess.

– 1 –

gla
L = |gla

L | exp(iϕla
L )

∆ϕ = ϕl1
L − ϕla

L

N ∼ 100
sin2(2∆ϕ)
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Figure 1: Integrated asymmetries with parton density functions included in the production
process. The dotted and dashed lines indicate the asymmetry required in order to observe
a 1σ deviation from zero with the indicated luminosities, see the text: (a) Tt = pt · (p!+×
p!−) in scenario A as a function of φM1 with M1 = 130 GeV, and (b) Ttb = p!+ · (pt×pb)
in scenario A as a function of φAt with M1 = 109 GeV.
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Figure 2: Integrated asymmetries with parton density functions included in the production
process. The dotted and dashed lines indicate the asymmetry required in order to observe
a 1σ deviation from zero with the indicated luminosities, see the text: (a) Tb = pb · (p!+×
p!−) in scenario A as a function of φAt with M1 = 109 GeV.
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pp→W+W− → l+l−νν̄

Φ ≡ sgn((!"+ − !"−) · ẑ) sin−1("̂+ × "̂−) · ẑ,

AΦ ≡
NΦ>0 −NΦ<0

NΦ>0 + NΦ<0
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