CP violation ordinary matter: β-decay and EDMs

Sean Tulin (U Michigan)

w/John Ng (PRD - arXiv:1111.0649)

CP violation in ordinary matter

- Standard Model: CP violation connected with flavor
 - ▶ 3 generations required (Kobayashi & Maskawa)
 - Evidence for CP violation in K, B, D meson systems
 - Consistent (mostly) with Standard Model predictions
- ▶ CP violation beyond the Standard Model?
 - New CP violation generic in theories beyond SM
 - ▶ Required (likely) to explain cosmological baryon asymmetry

New CP violation may not be connected with flavor Search for CP violation in systems of first generation quarks and leptons

CP violation in ordinary matter

- ▶ EDMs of nucleons, nuclei, and atoms
- ▶ CP violation in nuclear beta decay
 - ► T-odd triple product correlations Jackson, Treiman, Wyld (1957)

EDMs as probes of CP violation

- Sensitive to many operators
- 2. Theoretical challenge to relate to underlying CP-phases

$$heta_{
m QCD}$$
 term $rac{g_s^2}{32\pi^2} \ ar{ heta} G^a_{\mu
u} ilde{G}^{\mu
u,a}$

Fermion EDMs

$$\frac{i}{2}d_f \bar{f} \sigma^{\mu\nu} \gamma_5 f F_{\mu\nu}$$

Quark Chromo-EDMs

$$\frac{i}{2}\tilde{d}_q\bar{q}\sigma^{\mu\nu}\gamma_5\lambda^a q\,G^a_{\mu\nu}$$

Weinberg (3-gluon)

$$\frac{1}{3}w f^{abc}G^a_{\mu\nu}\tilde{G}^{\nu\beta,b}G_{\beta}^{\mu,c}$$

Four-fermion ints.

$$C_{ij} (\bar{\psi}_i \psi_i) (\bar{\psi}_j i \gamma_5 \psi_j)$$

Currently most stringent EDM bounds

$$|d_n| < 2.9 \times 10^{-26}~e~{
m cm}~~(90\%~{
m CL})$$
 Baker et al (2006) $|d_{
m Hg}| < 3.1 \times 10^{-29}~e~{
m cm}~~(95\%~{
m CL})$ Griffith et al (2009) $|d_{
m Tl}| < 9 \times 10^{-25}e~{
m cm}~~(90\%~{
m C.L.})$ Regan et al (2002)

$$|d_e| < \begin{cases} 10.5 \times 10^{-28} e \text{ cm} & (90\%\text{CL}) \text{ YbF molecule} \\ 16 \times 10^{-28} e \text{ cm} & (90\%\text{CL}) d_{\text{Tl}} \end{cases}$$

Hudson et al. (2011)

- ▶ CP violation in nuclear beta decay
 - ▶ Time-reversal-odd triple product correlations

- ▶ CP violation in nuclear beta decay
 - ▶ Time-reversal-odd triple product correlations

Correlations:

D-correlation

$$\langle \mathbf{J} \rangle \cdot \mathbf{p}_e \times \mathbf{p}_{
u}$$
 (P-even, T-odd):

R-correlation

$$\langle \mathbf{J}
angle \cdot oldsymbol{\sigma}_e imes \mathbf{p}_e$$
 (P-odd,T-odd):

Differential decay rate (polarized nuclei, unpolarized electron):

$$\omega(\langle J \rangle | E_{e}, \Omega_{e}, \Omega_{\nu}) dE_{e} d\Omega_{e} d\Omega_{\nu}$$

$$= \frac{1}{(2\pi)^{5}} p_{e} E_{e} (E^{0} - E_{e})^{2} dE_{e} d\Omega_{e} d\Omega_{\nu} \xi \left\{ 1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m}{E_{e}} + c \left[\frac{1}{3} \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} - \frac{(\mathbf{p}_{e} \cdot \mathbf{j}) (\mathbf{p}_{\nu} \cdot \mathbf{j})}{E_{e} E_{\nu}} \right] \left[\frac{J(J+1) - 3\langle (\mathbf{J} \cdot \mathbf{j})^{2} \rangle}{J(2J-1)} \right] + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left[A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + D \frac{\mathbf{p}_{e} \times \mathbf{p}_{\nu}}{E_{e} E_{\nu}} \right] \right\}.$$

Jackson, Treiman, Wyld (1957)

Differential decay rate

(polarized nuclei, polarized electron, v momentum integrated over):

$$\omega(\langle \mathbf{J} \rangle, \boldsymbol{\sigma} | E_e, \Omega_e) dE_e d\Omega_e$$

$$=\frac{1}{(2\pi)^4}p_eE_e(E^0-E_e)^2dE_ed\Omega_e$$

$$\times \xi \left\{ 1 + b \frac{m}{E_e} + \left(A \frac{\langle \mathbf{J} \rangle}{J} + G \sigma \right) \cdot \frac{\mathbf{p}_e}{E_e} + \sigma \cdot \left[N \frac{\langle \mathbf{J} \rangle}{J} \right] \right\}$$

$$+Q\frac{\mathbf{p}_{e}}{E_{e}+m}\left(\frac{\langle \mathbf{J}\rangle}{J}\cdot\frac{\mathbf{p}_{e}}{E_{e}}\right)+R\frac{\langle \mathbf{J}\rangle}{J}\times\frac{\mathbf{p}_{e}}{E_{e}}\right).$$

Jackson, Treiman, Wyld (1957)

Current experimental status

R correlation $\langle \mathbf{J} \rangle \cdot \boldsymbol{\sigma}_e \times \mathbf{p}_e$

neutron

$$R_n = (8 \pm 16) \times 10^{-3}$$

Kozela et al. (2009)

▶ ⁸Li → ⁸Be:

$$R_{\rm Li} = (9 \pm 22) \times 10^{-4}$$

Huber et al. (2003)

D correlation $\langle \mathbf{J} \rangle \cdot \mathbf{p}_e \times \mathbf{p}_{\nu}$

neutron

$$D_n = (-1.0 \pm 2.1) \times 10^{-4}$$

Mumm et al. (2011+2012) [emiT experiment]

► 19 Ne $\rightarrow ^{19}$ F:

$$D_{\text{Ne}} = (1 \pm 6) \times 10^{-4}$$

Baltrusaitis & Calaprice (1977), Hallin et al. (1984)

Questions

- How do D and R probe CP violating beyond the SM?
 - What operators?
 - What new physics models?
- How are D and R related to EDM constraints?
 - Given current EDM constraints, how large can D or R be?

- Caveat:
 - Assume no cancellations between CP-violating contributions
 - \blacktriangleright EDMs and β decay are complementary, probe different linear combinations of phases

Standard lore

R correlation $\langle \mathbf{J}
angle \cdot oldsymbol{\sigma}_e imes \mathbf{p}_e$ P-odd,T-odd

Correlated with EDMs

EDM constraints constrain R to be much smaller than direct measurements

D correlation $\langle \mathbf{J} \rangle \cdot \mathbf{p}_e \times \mathbf{p}_{\nu}$ P-even, T-odd

Less correlated with EDMs

In some models, D can be as large as direct measurements allow

Mainly focus on D

▶ A top-down perspective: e.g. Deutch & Quinn (1995), Herczeg (2001)

$$H = \frac{4G_F}{\sqrt{2}} V_{ud} \left(a_{LL}^V \bar{e}_L \gamma^{\mu} \nu_L \, \bar{u}_L \gamma_{\mu} d_L + a_{LR}^V \bar{e}_L \gamma^{\mu} \nu_L \, \bar{u}_R \gamma_{\mu} d_R \right.$$

$$+ a_{RL}^V \, \bar{e}_R \gamma^{\mu} \nu_R \, \bar{u}_L \gamma_{\mu} d_L + a_{RR}^V \, \bar{e}_R \gamma^{\mu} \nu_R \, \bar{u}_R \gamma_{\mu} d_R$$

$$+ a_{LL}^S \, \bar{e}_L \nu_R \, \bar{u}_L d_R + a_{LR}^S \, \bar{e}_L \nu_R \, \bar{u}_R d_L$$

$$+ a_{RL}^S \, \bar{e}_R \nu_L \, \bar{u}_R d_L + a_{RR}^S \, \bar{e}_R \nu_L \, \bar{u}_L d_R$$

$$+ a_{LR}^T \, \bar{e}_L \frac{\sigma^{\mu\nu}}{\sqrt{2}} \nu_R \, \bar{u}_R \frac{\sigma_{\mu\nu}}{\sqrt{2}} d_L + a_{RL}^T \, \bar{e}_R \frac{\sigma^{\mu\nu}}{\sqrt{2}} \nu_L \, \bar{u}_R \frac{\sigma_{\mu\nu}}{\sqrt{2}} d_L \right)$$

Most general beta-decay effective Hamiltonian

Long history to understand and probe structure of SM

▶ A top-down perspective: e.g. Deutch & Quinn (1995), Herczeg (2001)

$$H = \frac{4G_F}{\sqrt{2}} V_{ud} \left(\begin{array}{c} a_{LL}^V \bar{e}_L \gamma^\mu \nu_L \, \bar{u}_L \gamma_\mu d_L + a_{LR}^V \, \bar{e}_L \gamma^\mu \nu_L \, \bar{u}_R \gamma_\mu d_R \\ \\ + a_{RL}^V \, \bar{e}_R \gamma^\mu \nu_R \, \bar{u}_L \gamma_\mu d_L + a_{RR}^V \, \bar{e}_R \gamma^\mu \nu_R \, \bar{u}_R \gamma_\mu d_R \\ \\ + a_{LL}^S \, \bar{e}_L \nu_R \, \bar{u}_L d_R + a_{LR}^S \, \bar{e}_L \nu_R \, \bar{u}_R d_L \\ \\ + a_{RL}^S \, \bar{e}_R \nu_L \, \bar{u}_R d_L + a_{RR}^S \, \bar{e}_R \nu_L \, \bar{u}_L d_R \\ \\ + a_{LR}^T \, \bar{e}_L \frac{\sigma^{\mu\nu}}{\sqrt{2}} \nu_R \, \bar{u}_R \frac{\sigma_{\mu\nu}}{\sqrt{2}} d_L + a_{RL}^T \, \bar{e}_R \frac{\sigma^{\mu\nu}}{\sqrt{2}} \nu_L \, \bar{u}_R \frac{\sigma_{\mu\nu}}{\sqrt{2}} d_L \right)$$

Coefficients parameterize beta decay interaction:

$$a_{LL}^{S}, a_{LR}^{S}, a_{RL}^{S}, a_{RR}^{S}, a_{LL}^{V}, a_{LR}^{V}, a_{RL}^{V}, a_{RR}^{V}, a_{LR}^{T}, a_{RL}^{T}$$

Standard Model (leading order): $\,a_{LL}^V = 1\,$

Two contributions to D: $D \equiv D_t + D_f$

Two contributions to D: $D \equiv D_t + D_f$

I. Fundamental T-violation (or CP violation)

$$D_{t} = \kappa \operatorname{Im} \left(a_{LR}^{V} a_{LL}^{V*} + a_{RL}^{V} a_{RR}^{V*} \right) + \kappa \frac{g_{S} g_{T}}{g_{V} g_{A}} \operatorname{Im} \left(a_{L+}^{S} a_{LR}^{T*} + a_{R+}^{S} a_{RL}^{T*} \right)$$

where
$$a_{L+}^S \equiv (a_{LL}^S + a_{LR}^S)$$
 $a_{R+}^S \equiv (a_{RL}^S + a_{RR}^S)$ $\kappa \equiv \frac{4g_V g_A M_F M_{GT}}{g_V^2 M_F^2 + g_A^2 M_{GT}^2} \sqrt{\frac{J}{J+1}} \, \delta_{JJ'} \simeq \begin{cases} 0.87 & \text{for } n \\ -1.03 & \text{for } ^{19} \text{Ne} \end{cases}$

 $D_t < 10^{-12}$ in Standard Model \rightarrow probes CP violation beyond SM Herczeg & Khriplovich (1997)

Two contributions to D: $D \equiv D_t + D_f$

I. Fundamental T-violation (or CP violation)

$$D_{t} = \kappa \operatorname{Im} \left(a_{LR}^{V} a_{LL}^{V*} + a_{RL}^{V} a_{RR}^{V*} \right) + \kappa \frac{g_{S}g_{T}}{g_{V}g_{A}} \operatorname{Im} \left(a_{L+}^{S} a_{LR}^{T*} + a_{R+}^{S} a_{RL}^{T*} \right)$$

where
$$a_{L+}^S \equiv (a_{LL}^S + a_{LR}^S)$$
 $a_{R+}^S \equiv (a_{RL}^S + a_{RR}^S)$
$$\kappa \equiv \frac{4g_V g_A M_F M_{GT}}{g_V^2 M_F^2 + g_A^2 M_{GT}^2} \sqrt{\frac{J}{J+1}} \delta_{JJ'} \simeq \begin{cases} 0.87 & \text{for } n \\ -1.03 & \text{for } ^{19} \text{Ne} \end{cases}$$

2. Electromagnetic final state effects (Callan & Treiman, 1967)

neutron $D_f=\mathcal{O}(10^{-5})$ Known to better than 1%. Ando et al (2009) $^{19}{
m Ne}~D_f\sim 10^{-4}$

Two contributions to D: $D \equiv D_t + D_f$

I. Fundamental T-violation (or CP violation)

$$D_t = \kappa \operatorname{Im} \left(a_{LR}^V a_{LL}^{V*} + a_{RL}^V a_{RR}^{V*} \right) + \kappa \frac{g_S g_T}{g_V g_A} \operatorname{Im} \left(a_{L+}^S a_{LR}^{T*} + a_{R+}^S a_{RL}^{T*} \right)$$

Interference of new physics scalar and tensor amplitudes

R coefficient more sensitive to scalar and tensor amplitudes, unless amplitudes are large ($a^{S,T} \sim 0.1$)

Two contributions to D: $D \equiv D_t + D_f$

I. Fundamental T-violation (or CP violation)

$$D_{t} = \kappa \operatorname{Im} \left(a_{LR}^{V} a_{LL}^{V*} + a_{RL}^{V} a_{RR}^{V*} \right) + \kappa \frac{g_{S} g_{T}}{g_{V} g_{A}} \operatorname{Im} \left(a_{L+}^{S} a_{LR}^{T*} + a_{R+}^{S} a_{RL}^{T*} \right)$$

Focus on vector terms a^{V}

Two contributions to D: $D \equiv D_t + D_f$

I. Fundamental T-violation (or CP violation)

$$D_{t} = \kappa \operatorname{Im} \left(a_{LR}^{V} a_{LL}^{V*} + a_{RL}^{V} a_{RR}^{V*} \right) + \kappa \frac{g_{S} g_{T}}{g_{V} g_{A}} \operatorname{Im} \left(a_{L+}^{S} a_{LR}^{T*} + a_{R+}^{S} a_{RL}^{T*} \right)$$

▶ Any vector-type new physics contribution to D generates:

$$\mathscr{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \, k_{LR} \, \mathcal{O}_{LR} \,, \quad \mathcal{O}_{LR} \equiv i (\bar{u}_L \gamma^\mu d_L \, \bar{d}_R \gamma_\mu u_R - \bar{d}_L \gamma^\mu u_L \, \bar{u}_R \gamma_\mu d_R)$$

$$\text{CP-odd four-quark operator}$$

▶ How sensitive are EDMs to this operator?

Contributes to neutron, deuteron, and mercury EDMs

Any vector-type new physics contribution to D generates:

$$\mathscr{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \, k_{LR} \, \mathcal{O}_{LR} \,, \quad \mathcal{O}_{LR} \equiv i (\bar{u}_L \gamma^\mu d_L \, \bar{d}_R \gamma_\mu u_R - \bar{d}_L \gamma^\mu u_L \, \bar{u}_R \gamma_\mu d_R)$$

$$\text{CP-odd four-quark operator}$$

How sensitive are EDMs to this operator?

neutron: Recent comprehensive analysis by An, Ji, Xu (2009) computing neutron EDM from four-quark operators

$$d_n = -1 \times 10^{-19} k_{LR} e \text{ cm}$$

Naïve order-of-magnitude estimate

$$d_n \sim e M_{QCD}/\Lambda^2 \sim 2|k_{LR}| \times 10^{-19} e \text{ cm}$$

 $M_{QCD} \sim 1 \text{ GeV} \quad \Lambda^{-2} \sim G_F k_{LR}$

How sensitive are EDMs to this operator?

mercury:

Contributes to EDM via nuclear Schiff moment

$$d_{\rm Hg} = -2.6 \times 10^{-17} e \,\mathrm{cm} \times \left(\frac{S_{\rm Hg}}{e \,\mathrm{fm}^3}\right)$$

Dzuba et al. (2009)

Schiff moment sourced by CP-odd isovector pion-nucleon coupling

$$\bar{g}_1 = 2 \times 10^{-6} \, k_{LR}$$
 Khatsimovsky et al. (1988)

Constant of proportionality has large theoretical uncertainty:

Ban, Dobaczewski, Engel, Shukla (2010)

	$E_{\rm gs}$	β	$E_{\rm exc.}$	a_0	a_1	a_2	b
SLy4	-1561.42	-0.13	0.97	0.013	-0.006	0.022	0.003
SIII	-1562.63	-0.11	0	0.012	0.005	0.016	0.004
SV	-1556.43	-0.11	0.68	0.009	-0.0001	0.016	0.002
SLy4	-1560.21	-0.10	0.83	0.013	-0.006	0.024	0.007
SkM*	-1564.03	0	0.82	0.041	-0.027	0.069	0.013
Ref. [6]				0.0004	0.055	0.009	_
Ref. [8]				0.007	0.071	0.018	

How sensitive are EDMs to this operator?

mercury:

Contributes to EDM via nuclear Schiff moment

$$d_{\rm Hg} = -2.6 \times 10^{-17} e \,\mathrm{cm} \times \left(\frac{S_{\rm Hg}}{e \,\mathrm{fm}^3}\right)$$

Dzuba et al. (2009)

Schiff moment sourced by CP-odd isovector pion-nucleon coupling

$$\bar{g}_1 = 2 \times 10^{-6} \, k_{LR}$$
 Khatsimovsky et al. (1988)

Constant of proportionality has large theoretical uncertainty:

Ban, Dobaczewski, Engel, Shukla (2010)

	$E_{\rm gs}$	β	$E_{\rm exc.}$	a_0	a_1	a_2	b
SLy4	-1561.42	-0.13	0.97	0.013	-0.006	0.022	0.003
SIII	-1562.63	-0.11	0	0.012	0.005	0.016	0.004
SV	-1556.43	-0.11	0.68	0.009	-0.0001	0.016	0.002
SLy4	-1560.21	-0.10	0.83	0.013	-0.006	0.024	0.007
SkM*	-1564.03	0	0.82	0.041	-0.027	0.069	0.013
-241	7			0.0004	0.055	0.009	
2 1	$k_{LR} e$	cm		0.007	0.071	0.018	
	-						

Any vector-type new physics contribution to D generates:

$$\mathscr{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \, k_{LR} \, \mathcal{O}_{LR} \,, \quad \mathcal{O}_{LR} \equiv i (\bar{u}_L \gamma^\mu d_L \, \bar{d}_R \gamma_\mu u_R - \bar{d}_L \gamma^\mu u_L \, \bar{u}_R \gamma_\mu d_R)$$

$$\text{CP-odd four-quark operator}$$

Summary:

$$|d_{\text{Hg}}| = 7 \times 10^{-24} |k_{LR}| e \text{ cm}$$
 $|d_{\text{Hg}}| < 3.1 \times 10^{-29} e \text{ cm}$ (95% CL)

(Order-of-magnitude uncertainty)

$$d_n = -1 \times 10^{-19} \, k_{LR} \, e \, \mathrm{cm}$$
 $|d_n| < 2.9 \times 10^{-26} \, e \, \mathrm{cm}$ (90% CL) O(1) uncertainty

$$|d_D| \approx 1.9 \times 10^{-14} \, |\bar{g}_1| \, e \, \mathrm{cm} \approx 4.5 \times 10^{-20} \, |k_{LR}| \, e \, \mathrm{cm}$$
 de Vries et al. (2011)

Future deuteron EDM measurement at BNL may reach $10^{-27}~e~{
m cm}$ or better

1. Anomalous coupling of W to RH quark charge current

1. Anomalous coupling of W to RH quark charge current

New physics operator: $\mathscr{L}_{\dim 6} = \frac{c}{\Lambda^2} \bar{u}_R \gamma^\mu d_R i H^T \epsilon D_\mu H + \text{h.c.}$

Integrate out the W (setting $V_{ud} = I$):

$$\mathcal{L}_{\dim 6} = -\frac{c}{\Lambda^2} \left(\bar{u}_R \gamma^\mu d_R \bar{e}_L \gamma_\mu \nu_{eL} + \bar{u}_R \gamma^\mu d_R \bar{d}_L \gamma_\mu u_L \right) + \text{h.c.}$$

$$\operatorname{Im}(a_{LR}^V) = k_{LR} = \frac{\operatorname{Im}(c)}{2\sqrt{2} G_F \Lambda^2}$$

1. Anomalous coupling of W to RH quark charge current

EDMs directly related to D coefficient:

$$|d_n| = 1 \times 10^{-19} e \text{ cm} \times |D_t/\kappa|$$

 $|d_{\text{Hg}}| = 7 \times 10^{-24} e \text{ cm} \times |D_t/\kappa|$
 $|d_D| = 4.5 \times 10^{-20} e \text{ cm} \times |D_t/\kappa|$

1. Anomalous coupling of W to RH quark charge current

EDMs directly related to D coefficient:

$$\begin{aligned} |d_n| &= 1 \times 10^{-19} \ e \ \text{cm} \times |D_t/\kappa| & \longrightarrow |D_t/\kappa| < 3 \times 10^{-7} \\ |d_{\text{Hg}}| &= 7 \times 10^{-24} \ e \ \text{cm} \times |D_t/\kappa| & \text{IO}^3 \ \text{stronger than direct bound.} \\ |d_D| &= 4.5 \times 10^{-20} \ e \ \text{cm} \times |D_t/\kappa| & \end{aligned}$$

2. New four-fermion interactions: leptoquarks

Scalar leptoquarks:
$$R = \begin{pmatrix} R_+ \\ R_- \end{pmatrix} \sim (3, 2, 7/6)$$
 $\widetilde{R} = \begin{pmatrix} \widetilde{R}_+ \\ \widetilde{R}_- \end{pmatrix} \sim (3, 2, 1/6)$

$$\mathscr{L}_{\text{int}} = h_L \, \bar{u}_R L_L^T \epsilon R + \tilde{h}_L \, \bar{d}_R L_L^T \epsilon \widetilde{R} + \text{h.c.}$$

Standard lore:

Leptoquark contributions to D are "EDM-safe"

D can be as larger as present sensitivities allow without conflicting with EDMs

2. New four-fermion interactions: leptoquarks

Scalar leptoquarks:
$$R = \begin{pmatrix} R_+ \\ R_- \end{pmatrix} \sim (3,2,7/6)$$
 $\widetilde{R} = \begin{pmatrix} \widetilde{R}_+ \\ \widetilde{R}_- \end{pmatrix} \sim (3,2,1/6)$

$$\mathscr{L}_{\text{int}} = h_L \, \bar{u}_R L_L^T \epsilon R + \tilde{h}_L \, \bar{d}_R L_L^T \epsilon \widetilde{R} + \text{h.c.}$$

Contributions to EDMs

Leptoquark models

"EDM-safe" leptoquark models are in fact not EDM-safe!

$$|d_n| > 9 \times 10^{-22} \ e \,\mathrm{cm} \times |D_t/\kappa| \ \left(\frac{m_{LQ}}{300 \,\mathrm{GeV}}\right)^2$$

$$|d_{Hg}| > 7 \times 10^{-26} \ e \,\mathrm{cm} \times |D_t/\kappa| \ \left(\frac{m_{LQ}}{300 \,\mathrm{GeV}}\right)^2$$

$$|d_D| > 4 \times 10^{-22} \ e \,\mathrm{cm} \times |D_t/\kappa| \ \left(\frac{m_{LQ}}{300 \,\mathrm{GeV}}\right)^2$$

Current LHC constraints m_{LQ} > 600 GeV (CMS 2012) implies $D_{\rm t}$ < 10^{-6} Constraints on LQ models with RH neutrinos weaker by factor 4.

Summary of D coefficient

Dimension-6: only one operator can contribute to D

$$\mathcal{L}_{\dim 6} = \frac{c}{\Lambda^2} \bar{u}_R \gamma^{\mu} d_R i H^T \epsilon D_{\mu} H + \text{h.c.}$$

- Models: W', Fourth generation, RPV SUSY (B violation)
- nEDM constraint stronger by factor 1000
- Dimension-8: leptoquark models

$$\frac{1}{\Lambda^4} (\bar{L}_L H) \gamma^{\mu} (L \epsilon H) \, \bar{u}_R \gamma_{\mu} d_R \quad \to \quad \frac{v^2}{\Lambda^4} \bar{e}_L \gamma^{\mu} \nu_L \, \bar{u}_R \gamma_{\mu} d_R$$

- Generates EDM at one-loop (but lower dim)
- nEDM constraint stronger by factor 100

R coefficient

CP violating scalar and tensor interactions

$$R_t = (\kappa_1 \mp \kappa_2) \left(\frac{g_T}{g_A}\right) \operatorname{Im}(a_{RL}^T) - \kappa_1 \left(\frac{g_S}{2g_A}\right) \operatorname{Im}(a_{RL}^S + a_{RR}^S)$$

Keeping only terms interfering linearly with SM amplitude

Three dim-6 operators contributing to R

$$\frac{c_1}{\Lambda^2} \, \bar{Q}_L d_R \, \bar{e}_R L_L = \frac{c_1}{\Lambda^2} \left(\bar{u}_L d_R \, \bar{e}_R \nu_L + \bar{d}_L d_R \, \bar{e}_R e_L \right)
= \frac{c_2}{\Lambda^2} \, \bar{u}_R Q_L \, \bar{e}_R L_L = \frac{c_2}{\Lambda^2} \left(\bar{u}_R d_L \, \bar{e}_R \nu_L - \bar{u}_R u_L \, \bar{e}_R e_L \right)
= \frac{c_3}{\Lambda^2} \, (\bar{u}_R \sigma^{\mu\nu} Q_L \, \bar{e}_R \sigma_{\mu\nu} L_L = \frac{c_3}{\Lambda^2} \left(\bar{u}_R \sigma^{\mu\nu} d_L \, \bar{e}_R \sigma_{\mu\nu} \nu_L - \bar{u}_R \sigma^{\mu\nu} u_L \, \bar{e}_R \sigma_{\mu\nu} e_L \right)$$

R coefficient

CP violating scalar and tensor interactions

$$R_t = (\kappa_1 \mp \kappa_2) \left(\frac{g_T}{g_A}\right) \operatorname{Im}(a_{RL}^T) - \kappa_1 \left(\frac{g_S}{2g_A}\right) \operatorname{Im}(a_{RL}^S + a_{RR}^S)$$

Keeping only terms interfering linearly with SM amplitude

Three dim-6 operators contributing to R

$$\frac{c_1}{\Lambda^2} \, \bar{Q}_L d_R \, \bar{e}_R L_L = \frac{c_1}{\Lambda^2} \left(\bar{u}_L d_R \, \bar{e}_R \nu_L + \bar{d}_L d_R \, \bar{e}_R e_L \right)
= \frac{c_2}{\Lambda^2} \, \bar{u}_R Q_L \, \bar{e}_R L_L = \frac{c_2}{\Lambda^2} \left(\bar{u}_R d_L \, \bar{e}_R \nu_L - \bar{u}_R u_L \, \bar{e}_R e_L \right)
= \frac{c_3}{\Lambda^2} \, (\bar{u}_R \sigma^{\mu\nu} Q_L \, \bar{e}_R \sigma_{\mu\nu} L_L = \frac{c_3}{\Lambda^2} \left(\bar{u}_R \sigma^{\mu\nu} d_L \, \bar{e}_R \sigma_{\mu\nu} \nu_L - \bar{u}_R \sigma^{\mu\nu} u_L \, \bar{e}_R \sigma_{\mu\nu} e_L \right)$$

Generate β decay coefficients

$$a_{RR}^S, a_{RL}^S, a_{RL}^T$$

Generate CP-odd e-N interaction

R coefficient

- \triangleright Same CP-violating operator \rightarrow relate R to EDMs
- Scalar coefficients constrained by Thallium EDM

- Scalar and tensor coefficients constrained by Hg EDM
- ▶ Indirect limit is $R < 10^{-8}$ compared to direct limit ~ 10^{-3}
- ▶ Can have dimension-8 operators → EDMs at I-loop
 - Loop suppression, but EDM is lower dimensional
 - Still very strongly constrained

Conclusions

- CP violation for D or R provides an irreducible EDM.
 - \rightarrow CP-odd nucleon interaction (n, D, Hg)
 - R → CP-odd electron-nucleon interaction (TI, Hg)
- ▶ Best indirect limit on D from nEDM, 100–10³ times better than direct limit on D_n
- ▶ Deuteron EDM bound at 10⁻²⁸ e cm will increase limits on D by 100
- Caveats
 - EDMs suppressed by fine-tuned cancellations
 - Hadronic uncertainties larger than previously thought
- \blacktriangleright β decay less competitive for BSM CP violation discovery, but can play role in interpreting a positive EDM signal

