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   CMS:  mh ~ 126.2 GeV (in ZZ);  mh = 124.9. GeV (in γγ)

          ATLAS:   mh = 123.5 GeV (in ZZ);  mh = 126.6 GeV (in γγ)      

and a possible enhanced γγ rate
μ= 1.8   in ATLAS  (~2.4 σ)
μ = 1.5 (CMS/July 4th)         

The mass results are consistent 
within present sensitivity
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The SM-Higgs, or not the SM-Higgs....

2012 has been an amazing year for HEP: 

A Higgs -like particle has been discovered
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 Generation of big hierarchy of scales 
 Generation of hierarchies of fermion masses.
 Neutrinos: are they encoding a secret message?
 Connection of electroweak and strong interactions with gravity
 Explanation of matter-antimatter asymmetry of the universe
 Dark Matter
 Dark Energy

The SM might be complete

•The Hierarchy Problem of the SM Higgs Sector

but still many open questions
Origin of mass of fundamental particles = the quest of EWSB ===> HIGGS

Quantum Corrections to the Higgs mass parameter diverge quadratically with the UV scale 

V (φ) = m2φ†φ+
λ

2
(φ†φ)2 m2 < 0

m2 = m2(ΛUV ) +∆m2 ∆m2 �
nW g2hWW + nhλ2 − nfg2hff

16π2
Λ2
UV

To explain                           either                           
             few TeV or fine tunning

m2 ∝ v2 ≈ O(M2
W )

ΛUV ≤
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Quantum Corrections to the Higgs Mass Parameter
One loop quadratic divergent contributions cancel if the number of degrees of 
freedom and  the couplings of bosons and fermions are equal to each other
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Supersymmetry: fermions                       fermions                       bosonsbosons
supersymmetrysupersymmetry

electron                        electron                        sselectronelectron
quark                              quark                              ssquarkquark
photphotinoino photonphoton
gravitgravitinoino gravitongraviton

Photino,  Zino and Neutral Higgsino:  Neutralinos

Charged Wino, charged Higgsino: Charginos

No new dimensionless couplings. Couplings of supersymmetric particles
equal to couplings of Standard Model ones.  
Two Higgs doublets necessary.  Ratio of vacuum expectation values
denoted by  tan β

Lectures on Supersymmetry Carlos E.M. Wagner, Argonne and EFI

Automatic cancellation of Λ2 loop corrections to the Higgs mass parameter 

For every fermion 
there is a boson
 of equal mass 
and couplings 

Higgs Mass Parameter Corrections

One loop corrections to the Higgs mass parameter cancel if the 
couplings of scalars and fermions are equal to each other
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(If the masses proceed from the 
v.e.v. of H, there is another 
diagram that ensures also the 
cancellation of the log term. 
Observe that  the fermion and 
scalar masses are the same in 
this case, equal to hf v.) 

Supersymmetry is a symmetry that ensures the equality of these couplings.

Lectures on Supersymmetry Carlos E.M. Wagner, Argonne and EFI
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Higgs Mass Parameter Corrections

One loop corrections to the Higgs mass parameter cancel if the 
couplings of scalars and fermions are equal to each other
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cancellation of the log term. 
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Supersymmetry is a symmetry that ensures the equality of these couplings.

Lectures on Supersymmetry Carlos E.M. Wagner, Argonne and EFI

+

a symmetry between bosons and fermions
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Why Supersymmetry?

• Helps stabilize the weak scale-Planck scale hierarchy

• SUSY algebra contains the generator of space translations 

• Allows for Gauge Coupling Unification at a scale ~ 1016 GeV  

• Starting from positive Higgs mass parameters at high energies,                 
induces electroweak symmetry breaking radiatively.       

• Provides a good Dark matter candidate:                                  
The Lightest SUSY Particle (LSP) 

• Provides a solution to the baryon asymmetry of the universe.                                                                                                                                                                                                 

necessary ingredient of theory of  quantum gravity

if there are new sources of CP violation beyond those in the SM

A good BSM
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Chiral supermultiplets of the Minimal Supersymmetric Standard Model (MSSM):

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (euL
edL) (uL dL) ( 3, 2 , 1

6
)

(×3 families) ū eu∗
R u†

R ( 3, 1, − 2
3
)

d̄ ed∗
R d†

R ( 3, 1, 1
3
)

sleptons, leptons L (eν eeL) (ν eL) ( 1, 2 , − 1
2
)

(×3 families) ē ee∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) ( eH+
u

eH0
u) ( 1, 2 , + 1

2
)

Hd (H0
d H−

d ) ( eH0
d

eH−
d ) ( 1, 2 , − 1

2
)

The superpartners of the Standard Model particles are written with a .̃ The

scalar names are obtained by putting an “s” in front, so they are generically called

squarks and sleptons, short for “scalar quark” and “scalar lepton”.

The Standard Model Higgs boson requires two different chiral supermultiplets,Hu and

Hd. The fermionic partners of the Higgs scalar fields are called higgsinos. There

are two charged and two neutral Weyl fermion higgsino degrees of freedom.

20

(uC)L

(dC)L

(eC)L

U

D

E

The Minimal Supersymmetric Standard Model

The vector bosons of the Standard Model live in gauge supermultiplets:

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon eg g ( 8, 1 , 0)

winos, W bosons fW± fW 0 W± W 0 ( 1, 3 , 0)

bino, B boson eB0 B0 ( 1, 1 , 0)

The spin-1/2 gauginos transform as the adjoint representation of the gauge

group. Each gaugino carries a .̃ The color-octet superpartner of the gluon is

called the gluino. The SU(2)L gauginos are called winos, and the U(1)Y

gaugino is called the bino.

However, the winos and the bino are not mass eigenstate particles; they mix with

each other and with the higgsinos of the same charge.

22
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R u†

R ( 3, 1, − 2
3
)

d̄ ed∗
R d†

R ( 3, 1, 1
3
)

sleptons, leptons L (eν eeL) (ν eL) ( 1, 2 , − 1
2
)
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However, the winos and the bino are not mass eigenstate particles; they mix with

each other and with the higgsinos of the same charge.
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Gauge Supermultiplets

Chiral Supermultiplets

The Minimal SUSY extension of the Standard Model  (MSSM)

Matter 
Superfields

Gauge
 Superfields

The winos and bino are not mass eigenstates, they mix with each other and with the Higgs 
superpartners, called higgsinos, of the same charge

Two Higgs doublets of opposite Hypercharges necessary to give mass 
to both up and down quarks and leptons in a gauge/SUSY invariant way

2 Higgsino doublets necessary for anomaly cancellation

  2 Higgs vev’s
tanβ = vu/vd
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Supersymmetry Breaking

• No supersymmetric particle have been seen: Supersymmetry is
broken in nature

• Unless a specific mechanism of supersymmetry breaking is known, no
information on the spectrum can be obtained.

• Cancellation of quadratic divergences:

– Relies on equality of couplings and not on equality of the masses
of particle and superpartners.

• Soft Supersymmetry Breaking: Give different masses to SM particles
and their superpartners but preserves the structure of couplings of
the theory.

15

Supersymmetry Breaking
If SUSY were an exact symmetry, 

the SM particles and their 
superpartners would have the 

exactly same masses

Recall that if supersymmetry were an exact symmetry, then superpartners would

have to be exactly degenerate with each other. For example,

mẽL
= mẽR

= me = 0.511 GeV

mũL
= mũR

= mu

mg̃ = mgluon = 0 + QCD-scale effects

etc.

But new particles with these properties have been ruled out long ago, so:

Supersymmetry must be broken in the vacuum state chosen by Nature.

Supersymmetry is thought to be spontaneously broken and therefore hidden, the

same way that the electroweak symmetry is hidden from very low-energy

experiments.

23

MeV
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∆m2
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The Soft SUSY-breaking Lagrangian for the MSSM 

Trilinear terms - proportional to the Yukawa couplings -
      induce L-R mixing in the sfermion sector once the Higgs acquire v.e.v.

B         SUSY breaking parameter determined from condition of proper EWSB

Most of what we do not really know about SUSY is expressed by the question: “How 
is SUSY broken?”

Gaugino masses, squark/slepton squared mass terms and trilinear/biliniar terms 
prop. to scalar superpotential do not spoil cancellation of quadratic divergences

−m2
QQ̃†Q̃−m2

U Ũ†Ũ −m2
DD̃†D̃ −m2

LL̃†L̃−m2
EẼ†Ẽ

Lsoft = −1
2
(M3g̃g̃ + M2W̃W̃ + M1B̃B̃)

−m
2
H1

H
∗
1H1 −m

2
H2

H
∗
2H2 − (µBH1H2 + cc.)

−(AuhuŨQ̃H2 + AdhdD̃Q̃H1 + AlhlẼL̃H1) + c.c.

MSSM with R-parity:105 new parameters not present in the SM
with many new CP phases possible
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The MSSM soft SUSY-breaking terms arise indirectly or radiatively, not from

tree-level renormalizable couplings directly to the SUSY-breaking sector.

(Hidden sector)
(Visible sector)

Supersymmetry

breaking origin
     MSSMFlavor-blind

interactions

Spontaneous SUSY breaking occurs in a “hidden sector” of particles with no

(or tiny) direct couplings to the “visible sector” chiral supermultiplets of the MSSM.

However, the two sectors do share some mediating interactions that transmit

SUSY-breaking effects indirectly. As a bonus, if the mediating interactions are

flavor-blind, then the soft SUSY-breaking terms of the MSSM will be also.

There are two obvious guesses for the flavor-blind interactions: gravitational and

the ordinary gauge interactions.

101

Understanding the origins of Spontaneous SUSY breaking:
Soft SUSY breaking terms arise indirectly,

not through treel level, renormalizable couplings to the SUSY breaking sector

Spontaneous SUSY breaking occurs in a Hidden sector of particles, 
with none or tiny direct couplings to the MSSM particles, 

when some components of the hidden sector acquire a vev                  . < F >�= 0

   If the mediating interactions are flavor blind ( gravity/ordinary gauge interactions),  the 

MSSM soft SUSY breaking terms will also be flavor independent (favored experimentally)

Many alternatives: Gravity-type; Gauge; Extra Dimensional mediated, ...
          different boundary conditions at an specific SUSY breaking scale⇒
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The SUSY Particles of the MSSM
The undiscovered particles in the MSSM:

Names Spin PR Mass Eigenstates Gauge Eigenstates

Higgs bosons 0 +1 h0 H0 A0 H± H0
u H0

d H+
u H−

d

ũL ũR d̃L d̃R “ ”

squarks 0 −1 s̃L s̃R c̃L c̃R “ ”

t̃1 t̃2 b̃1 b̃2 t̃L t̃R b̃L b̃R

ẽL ẽR ν̃e “ ”

sleptons 0 −1 µ̃L µ̃R ν̃µ “ ”

τ̃1 τ̃2 ν̃τ τ̃L τ̃R ν̃τ

neutralinos 1/2 −1 Ñ1 Ñ2 Ñ3 Ñ4 B̃0 W̃ 0 H̃0
u H̃0

d

charginos 1/2 −1 C̃±
1 C̃±

2 W̃± H̃+
u H̃−

d

gluino 1/2 −1 g̃ “ ”

80

The pattern of SUSY particle masses depend on the SUSY breaking scenario.

No SUSY particles discovered at the LHC yet, but....
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Given the Discovery of a Higgs-like particle with mass ~ 125 GeV

• Do we still expect SUSY (some type of low energy SUSY) ?

• If yes, what are the implications of the new particle mass, production
  and decay rates for SUSY models?

• What do we expect in the extended SUSY Higgs sector?

•  What are the implications for flavor?
   -- Flavor-Higgs connection within the MFV assumption at the SUSY breaking scale --

•  What about new sources of CP violation?
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The MSSM Higgs Sector
2 CP-even h, H  with mixing angle α     
1 CP-odd A and a charged pair H+- with mixing angle β

m2
h � M2

Z cos2 2β

Quantum Corrections:  Higgs mass shifted due to incomplete cancellation of 
particles and sparticles in the loops (stops & for tanβ>10 also sbottoms/staus)

the off-diagonal term depends on the
stop-Higgs trilinear couplings

For large mA, with                            the dominant one-loop corrections are given by,  

M.C. Espinosa, Quiros, Wagner ’95; M.C. Quiros, Wagner ’95
Haber, Hempfling, Hoang ’962 loop result:   mh < 135 GeV
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MSSM Soft SUSY Breaking Parameters and Mh ~ 125 GeV

M. C., S. Gori, N. Shah, C. Wagner ’11
+L.T.Wang ‘12

Large stop sector mixing 
  At > 1 TeV

 
No lower bound on the lightest stop

One stop can be light and the other heavy   
 or

in the case of similar stop soft masses. 
both stops can be below 1TeV

Similar results from 
Arbey, Battaglia, Djouadi, Mahmoudi, Quevillon ’11

Draper Meade, Reece, Shih’11

   Large mixing also constrains
 SUSY breaking model building

Light 3rd generation Sfermions can change 
loop induced production and decay rates

light staus with sizeable mixing 
(large μ tan beta) 

may enhanced γγ up to 50 % 
     with SM-like ZZ/WW ; 
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CP Violation in the MSSM 
•  In low energy SUSY, there are extra CP-violating phases beyond the CKM ones,      

     associated with complex SUSY breaking parameters  Af, Mi, Βμ 
     and the complex SUSY Higgsino mass μ

Under the assumption of flavor universality in the scalar sector

M2
S = m2

SI for S= Q,U,D,L,E

at the SUSY breaking scale

 and proportionality of trilinear soft mass terms to the Yukawa

Af = afYf for f= u,d,e

One can redefine fields and absorb many phases, 
but there are 4 rephasing invariant combinations 

Arg(µMim2∗
12) Arg(AfM∗

i ) Arg(MjM∗
i ) Arg(AfA∗

f �)

take  m12, and μ real and vary other phases
In many simplified analysis only two phases left:

 all gaugino-higgsino phases set equal, all scalar sector phases equal  

 CPsuperH code by Lee, Pilaftsis, Carena, Choi, Drees, Ellis, Wagner
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One of the most important consequences of CP-violation is its possible impact on the 
explanation of the matter-antimatter asymmetry.  

The Mystery of the Matter-Antimatter Asymmetry 

•   Abundance of primordial elements  
•    Predictions from Big Bang Nucleosynthesis  

 EWBG does not work in the SM ==> Higgs too heavy  and not sufficient CP violation
             may be realized  in SUSY  extensions of the SM, but demands  
                                            new sources of CP-violation 

! = nB n" # 6.10
$10

Antimatter governed by the same interactions as matter.

• Baryons, antibaryons and photons equally 
   abundant in the early universe
• To remove preferentially antimatter, the CP 
   symmetry relating           must be violated 
•No net Baryon number if B conserved at all times

B to B

What generated the small observed 
baryon--antibaryon asymmetry ?
    Electroweak Baryogenesis ?

See also Cirigliano’s talk
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) /exp(-2  W0 !"#$ %&B

)  /TT)(exp(-E T   sph00 !"# $%B

Esph !  8 "  v(T) / g

Baryogenesis in the Standard Model  

•   Baryon number violation: Anomalous Processes 
•   CP violation: Quark CKM mixing 
•   Non-equilibrium: Possible at the electroweak phase transition. 

Sakharov’s Conditions 
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nB !  0

nB
s
=
nB (Tn )
s

exp !
1016

Tn(GeV)
exp !

Esph Tn( )
Tn

"

#$
%

&'
"

#
$

%

&
'

v(Tn ) / Tn > 1

Baryon Asymmetry at the Electroweak Phase Transition 

Friday, February 15, 2013



T= Tn 
T= TF 

T= Tn 
T= TF 

! 

V=D(T2 "T0
2)H2 +ESMT H3 + #(T) H4

and   v(Tn )
Tn

!
E
"

    ,   with "#
mH

2

v2

•D term is responsible for the phenomenon of
  symmetry restoration
•E term receives contributions proportional to the 
sum of the cube of all light boson particle masses 

Finite Temperature Higgs Potential

Since in the SM the only bosons are the gauge bosons and the quartic coupling 
is proportional to the square of the Higgs mass

v(Tn )
Tn

> 1 implies mH < 40 GeV !   ruled out by LEP7

Electroweak Baryogenesis in the SM is ruled out
 Independent Problem: not enough CP violation to create the asymmetry

Farrar and Shaposhnikov, Gavela et al.,  Huet and Satter
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How to make Electroweak Baryogenesis work?
Baryogenesis Preservation

New bosonic degrees of freedom:  superpartners of the top quark, with strong couplings 
 to the Higgs allow for a sufficiently strong first order phase transition

Huet, Nelson ʻ91; Giudice ʻ91;
Espinosa Quiros, Zwirner ʻ93
M.C. Quiros, Wagner, ʻ96-ʼ 98

• mh ~ 125 GeV
• lightest stop masses < 115  GeV
• All other squarks heavy: 100-1000 TeV  

technical framework for the treatment of the light stop scenario, in the presence of a very
heavy stop, was defined by using an effective theory approach and it was subsequently

applied to the EWBG scenario in Ref. [23]. For completeness, and in order to define a
few representative updated points, we present the results of such an analysis here.

In order to properly analyze the issue of EWBG we have complemented the zero tem-

perature results with the two-loop finite temperature effective potential [12]. Light stops
may be associated with the presence of additional minima in the stop–Higgs V (t̃, h) po-

tential, and therefore the question of vacuum stability is relevant and should be considered
by a simultaneous analysis of the stop and Higgs scalar potentials. All points shown in

Fig. 1 fulfill the vacuum stability requirement 1.
For values of the heavy stop mass mQ below a few tens of TeV, the maximal Higgs

mass that can be achieved consistent with a strong first order phase transition is about

122 GeV. The main reason is that larger values of the Higgs boson mass would demand
large values of the mixing parameter Xt, for which the effective coupling ghht̃t̃ of the

lightest stop to the Higgs is suppressed, turning the electroweak phase transition too
weak. In the effective theory the coupling ghht̃t̃ is given by

114 117 120 123 126 129 132

90

95

100

105

110

115

120

mQ ! 50 TeV

mh [GeV]

m
t̃

[G
eV

]

114 117 120 123 126 129 132

90

95

100

105

110

115

120

mQ ! 106 TeV

E

AG

F
B

C

D

mh [GeV]

m
t̃

[G
eV

]

Figure 1: The window with 〈φ(Tn)〉/Tn ! 1 for a gluino mass M3 = 700 GeV, mQ ≤ 50TeV

(left panel) and mQ ≤ 106 TeV (right panel).

1There is an apparent loss of perturbativity in the thermal corrections to the t̃ potential associated
with the longitudinal modes of the gluon. In our work we considered that, due to their large tempera-
ture dependent masses, the terms proportional to the third power of their thermal masses in the high
temperature expansion are efficiently screened and do not lead to any relevant contribution to the t̃
potential.

4

In the MSSM
23
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233

SMMSSM 1
2
sinEE !

!
"

#
$
$
%

&
'+(

Q

tt

m
Xh

)
*

!(TH
n ) /TH

n > 1  

M.C. Nardini, Quiros, Wagner, 10-ʼ12

Point A B C D E F G

|At/mQ| 0.5 0 0 0 0.3 0.4 0.7

tan β 15 15 2.0 1.5 1.0 1.0 1.0

Table 1: Values of the fundamental parameters at the scale mQ = 106 TeV corresponding to the

benchmark points shown in the left panel of Fig. 1.

ghht̃t̃ ! h2
t

(

1−
X2

t

m2
Q

)

(1 +∆g) (2.1)

where ∆g contains one-loop threshold and radiative corrections (see Ref. [31] and Fig. 1

of Ref. [33]). Such Higgs mass values, below 122 GeV, would not lead to an explanation
of the Higgs signal observed at the LHC [24–30].

For larger values of the heaviest stop mass the logarithmic corrections to the Higgs
mass increase and larger values of the Higgs mass may be obtained for the same value

of Xt/mQ, preserving the strength of the phase transition. In this paper we shall focus
on benchmark points where mQ = 106TeV. This is represented in the right panel of
Fig. 1, where it is shown that values of the Higgs mass as large as 132 GeV may be

obtained for this value of mQ and (relatively large values of) tanβ ! 15, corresponding to
point A. However any given point inside the EWBG region calculated at mQ = 106TeV

and moderate tanβ can also be conveniently obtained by decreasing mQ and increasing
tan β. Even for tan β ! 1 values of the Higgs mass about 125 GeV may be obtained

for mQ = 106 TeV, as it is represented by point G in Fig. 1. The largest values of the
Higgs mass are obtained for the largest possible values of the Higgs mixing parameter,
which in turn leads to the smallest values of the lightest stop mass consistent with a

strong electroweak phase transition. Points A and B have tan β ! 15 while the rest of
the points have smaller values of tan β as shown in Tab. 1, which defines the values of

the fundamental parameters for the benchmark points used in this work 2. Finally let us
stress that, although in this paper we concentrate on the MSSM case, the value of mQ

can be considerably lowered in some non-minimal UV completions of the LSS [36].

3 Light Neutralinos and the EWBG Scenario

In this section, we shall study the effects of light neutralinos on the Z and Higgs in-

visible width, as well as on the stop phenomenology within the EWBG scenario. As it
was discussed in section 1, a light stop with relevant couplings to the Higgs (leading to

2Notice that the parameters At ! Xt as µ = O(100GeV) # mQ in the LSS.

5

Cohen, Morrisey , Pierce 12 

                             to compensate 
enhanced gluon fusion production

Non-standard stop decays      

Scenario challenged by 
Higgs and Stops phenomenology

t̃ → χ±∗b → ν̃τ τb → τb /ET

Br(h → χ̃0χ̃0) 30− 60%
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Baryon Asymmetry Enhanced for:  
similar Higgsino-Wino masses and smaller values of the CP -odd Higgs mass               

Acceptable values of the baryonic density for a sizeable range of SUSY particle 
masses and CP violating phases but 

MSSM EWBG scenario very constrained by EDM limits 

MSSM extensions (extra singlets) enlarge the SUSY space of EWBG 

Baryon Asymmetry

•  New CP violating phases are crucial 

•  Gaugino and Higgsino masses of    
order of the weak scale highly preferred 

•  Results scale with   

     Results for maximal CP violation  
1))M sin(arg( 2 =µ

                               sin(arg(µ  M2 )) 
 and linearly decrease with tan!

µ  Higgsino mass;  M1,2 ! Bino,Wino masses

! 

M2 = 200 GeV

5tan =!
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      An order-of-magnitude improvement in the bound on the electron EDMAn order-of-magnitude improvement in the bound on the electron EDM

             will leave little room for this scenario.             will leave little room for this scenario.

Note: There are O(1) theoretical uncertaintiesNote: There are O(1) theoretical uncertainties

Phases in the MSSM EWBG scenario very constrained by EDM limits

!        5 " tan# " 10         
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CP Violation in the MSSM   contʼd

•  These  CP-violating phases  may induce effects on observables such as 
      -- new contributions to the e.d.m. of the electron and the neutron
     -- Higgs mediated FCNC in the K and B –meson systems 
    
Effects on observables can be small/sizeable depending SUSY parameter space 

• In the Higgs sector at tree-level, all CP-violating phases, if present, may be 
absorved into a redefinition of the fields.

• CP-violation in the Higgs sector appears at the loop-level, associated with 
third generation scalars and/or the gaugino/Higgsino sectors,

                                          take  m12, and μ real:  
                              Arg (At)  and  Arg (Ab/τ) for large tanβ  
                          Arg(M3)  and less relevant Arg(M1) Arg(M2)
 it can have important consequences for Higgs phenomenology and flavor physics
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Electric Dipole Moments in the MSSM
• Consider effective CP-odd Lagrangians at the corresponding energy scales
   to relate experimental measurements of neutron and atom EDM’s 
   to fundamental CP-odd MSSM parameters at and above the EW scale

1)  CP-odd operators at the nuclear scale are related to:
                     EDM’s of electron de, neutron dn, proton dp,  

electron-Nucleon and Nucleon-Nucleon interactions
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Fig. 1. A schematic plot of the hierarchy of scales between the CP-odd sources
and three generic classes of observable EDMs. The dashed lines indicate generically
weaker dependencies.

2.1 Observable EDMs

Let us begin by reviewing the lowest level in this construction, namely the
precise relations between observable EDMs and the relevant CP -odd operators
at the nuclear scale. At leading order, such effects may be quantified in terms
of EDMs of the constituent nucleons, dn and dp (where the neutron EDM
is already an observable), the EDM of the electron de, and CP -odd electron-
nucleon and nucleon-nucleon interactions. In the relevant channels these latter
interactions are dominated by pion exchange, and thus we must also consider
the CP -odd pion-nucleon couplings ḡπNN which can be induced by CP -odd
interactions between quarks and gluons. To be more explicit, we write down
the relevant CP -odd terms at the nuclear scale,

Lnuclear
eff = Ledm + LπNN + LeN , (2.3)

which can be split into terms for the nucleon (and electron) EDMs,

Ledm = −
i

2

∑

i=e,p,n

di ψi(Fσ)γ5ψ, (2.4)

the CP -odd pion nucleon intercations,

LπNN = ḡ(0)
πNNN̄τaNπa + ḡ(1)

πNNN̄Nπ0

+ḡ(2)
πNN(N̄τaNπa − 3N̄τ 3Nπ0), (2.5)
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+ḡ(2)
πNN(N̄τaNπa − 3N̄τ 3Nπ0), (2.5)

7

⊃

Energy

TeV

atomic

nuclear

QCD

neutron EDM

   EDMs of
diamagnetic
 atoms (Hg)

fundamental CP!odd phases

C   ,C qe

NN!g 

de

    EDMs of

   atoms (Tl)
paramagnetic

C    S,P,T

              

qq

~
q,d  , d  , wq"

Fig. 1. A schematic plot of the hierarchy of scales between the CP-odd sources
and three generic classes of observable EDMs. The dashed lines indicate generically
weaker dependencies.

2.1 Observable EDMs

Let us begin by reviewing the lowest level in this construction, namely the
precise relations between observable EDMs and the relevant CP -odd operators
at the nuclear scale. At leading order, such effects may be quantified in terms
of EDMs of the constituent nucleons, dn and dp (where the neutron EDM
is already an observable), the EDM of the electron de, and CP -odd electron-
nucleon and nucleon-nucleon interactions. In the relevant channels these latter
interactions are dominated by pion exchange, and thus we must also consider
the CP -odd pion-nucleon couplings ḡπNN which can be induced by CP -odd
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dominated by pion exchange ==> by gluon-quark int.
⊃

and finally CP -odd electron-nucleon couplings,

LeN = C(0)
S ēiγ5eN̄N + C(0)

P ēeN̄ iγ5N + C(0)
T εµναβ ēσµνeN̄σαβN

+C(1)
S ēiγ5eN̄τ 3N + C(1)

P ēeN̄iγ5τ
3N + C(1)

T εµναβ ēσµνeN̄σαβτ 3N. (2.6)

In certain rare cases, CP -odd nucleon-nucleon forces are not mediated by
pions, in which case the effective Lagrangian must be extended by a variety
of contact terms e.g. N̄NN̄iγ5N , and the like.

The dependence of the observable EDMs on the corresponding Wilson coef-
ficients relies on atomic and nuclear many-body calculations which would go
beyond the scope of this review to cover here (see the reviews [17,18] for fur-
ther details). However, we will briefly summarize the current status of these
calculations, before turning to our major focus which is the calculation of these
coefficients in terms of higher scale CP -odd sources.

As alluded to earlier on, it is convenient to split the discussion into three
parts, corresponding roughly to the three classes of observable EDMs which
currently provide constraints at a similar level of precision; namely: EDMs
of paramagnetic atoms and molecules, EDMs of diamagnetic atoms, and the
neutron EDM.

• EDMs of paramagnetic atoms – thallium EDM

Paramagnetic systems, namely those with one unpaired electron, are primarily
sensitive to the EDM of this electron. At the nonrelativistic level, this is far
from obvious due to the Schiff shielding theorem which implies, since the atom
is neutral, that any applied electric field will be shielded and so an EDM of the
unpaired electron will not induce an atomic EDM. Fortunately, this theorem
is violated by relativistic effects. In fact, it is violated strongly for atoms with
a large atomic number, and even more strongly in molecules which can be
polarised by the applied field. For atoms, the parameteric enhancement of the
electron EDM is given by [19,20,18],

dpara(de) ∼ 10
Z3α2

J(J + 1/2)(J + 1)2
de, (2.7)

up to numerical O(1) factors, with J the angular momentum and Z the atomic
number. This enhancement is significant, and for large Z, the applied field
can be enhanced be a factor of a few hundred within the atom. This feature
explains why atomic systems provide such a powerful probe of the electron
EDM, since the “effective” electric field can be much larger than one could
actually produce in the lab.
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T εµναβ ēσµνeN̄σαβτ 3N. (2.6)

In certain rare cases, CP -odd nucleon-nucleon forces are not mediated by
pions, in which case the effective Lagrangian must be extended by a variety
of contact terms e.g. N̄NN̄iγ5N , and the like.

The dependence of the observable EDMs on the corresponding Wilson coef-
ficients relies on atomic and nuclear many-body calculations which would go
beyond the scope of this review to cover here (see the reviews [17,18] for fur-
ther details). However, we will briefly summarize the current status of these
calculations, before turning to our major focus which is the calculation of these
coefficients in terms of higher scale CP -odd sources.

As alluded to earlier on, it is convenient to split the discussion into three
parts, corresponding roughly to the three classes of observable EDMs which
currently provide constraints at a similar level of precision; namely: EDMs
of paramagnetic atoms and molecules, EDMs of diamagnetic atoms, and the
neutron EDM.

• EDMs of paramagnetic atoms – thallium EDM

Paramagnetic systems, namely those with one unpaired electron, are primarily
sensitive to the EDM of this electron. At the nonrelativistic level, this is far
from obvious due to the Schiff shielding theorem which implies, since the atom
is neutral, that any applied electric field will be shielded and so an EDM of the
unpaired electron will not induce an atomic EDM. Fortunately, this theorem
is violated by relativistic effects. In fact, it is violated strongly for atoms with
a large atomic number, and even more strongly in molecules which can be
polarised by the applied field. For atoms, the parameteric enhancement of the
electron EDM is given by [19,20,18],

dpara(de) ∼ 10
Z3α2

J(J + 1/2)(J + 1)2
de, (2.7)

up to numerical O(1) factors, with J the angular momentum and Z the atomic
number. This enhancement is significant, and for large Z, the applied field
can be enhanced be a factor of a few hundred within the atom. This feature
explains why atomic systems provide such a powerful probe of the electron
EDM, since the “effective” electric field can be much larger than one could
actually produce in the lab.

8

Different calculations at the atomic/nuclear level allowed us to compute
dTl dHg dD

in term of the above CP-odd operator coefficients

Many excellent talks: Ramsey-Musolf;  Ritz, Izubuchi 
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2)  Considering different hadronic approaches one can compute the 
dependence of the nuclear scale coefficients on the CP-odd effective 
operators at the strong interaction scale  (~1GeV) 
         [many uncertainties, taking into account in various ways]

3) One considers the contributions from the SUSY CP-odd effective 
higher dim. operators at the scale MSUSY and evolve them down to 1GeV 
using anomalous dimensions,

dn = dn(θ̄, d
E
f , d

C
q , d

G, Cff �)

ḡ(i)πNN = ḡ(i)πNN (θ̄, dCq , d
G, Cff �)

CS in terms of semileptonic 4-fermion coupling Ceq

Most relevant EDM effects in the MSSM:

Consider dimension 5 and dimension 6 (some effectively dim. 8) operators

Assumed PQ axion takes care of dim. 4 potentially dominant terms
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1-loop EDMs and for leptons 

1-loop EDM’s/CEDM’s for quarks 

cancellations.

For the presentation of our analytic results, we follow the conventions and nota-
tions of CPsuperH [27], especially for the masses and mixing matrices of the neutral Higgs

bosons and SUSY particles. We note parenthetically that the new version of CPsuperH,
CPsuperH2.0, includes an improved treatment of Higgs-boson propagators and Higgs cou-

plings, and enables numerical predictions for a number of flavour-changing-neutral-current
(FCNC) B-meson observables, including CP-violating effects. On the basis of the results
in this work, we further improve the code CPsuperH2.0 by implementing the computation

of the Thallium, neutron, Mercury and deuteron EDMs in the CP-violating MSSM.

The layout of the paper is as follows. Section 2 presents all formulae relevant to the
one-loop contributions to the electric and chromoelectric dipole moments of the charged

leptons and quarks that result from chargino-, neutralino-, and gluino-mediated diagrams.
Non-holomorphic threshold effects on the light-quark Yukawa couplings have been appropri-

ately resummed, as these are the dominant source of higher-order corrections. In Section 3,
we calculate the CP-odd dimension-six three-gluon Weinberg operator, taking into account
loop diagrams involving t and b quarks and Higgs bosons, in addition to the previously

known loop effects due to t and b squarks and gluinos. In addition, we present analytic
results for the Higgs-mediated four-fermion operators and the dominant Higgs-mediated

two-loop diagrams. In Section 4 we compute the 205Tl, n, 199Hg and 2H+ EDMs in the
CP-violating MSSM. Section 5 presents illustrative constraints on key soft SUSY-breaking

parameters and CP-odd phases in the CPX, the trimixing and the MCPMFV scenarios.
We summarize our conclusions in Section 6.

2 One-Loop EDMs of Leptons and Quarks

At the one-loop level, the charged leptons, e, µ and τ , and the light quarks, u, d and s, can

have EDMs induced by charginos, neutralinos and gluinos. The u, d and s quarks may also
develop chromoelectric dipole moments (CEDMs) via the corresponding squark and gluino

loop diagrams. In this Section we exhibit analytical formulae for the one-loop EDMs of
charged leptons and light quarks, and the CEDMs of the quarks.

We denote the EDM of a fermion by dE
f and the CEDM of a quark by dC

q . The

relevant (C)EDM interaction Lagrangian is given by

L(C)EDM = −
i

2
dE

f F µν f̄ σµνγ5 f −
i

2
dC

q Ga µν q̄ σµνγ5T
a q , (2.1)

where F µν and Ga µν are the electromagnetic and strong field strengths, respectively, and
the T a = λa/2 are the generators of the SU(3)C group. The interaction Lagrangian (2.1)

leads to a matrix element of the form:

iM = −dE
f ε(q) · (p + p′) ū(p′) γ5 u(p) , (2.2)

3

χ= chargino, neutralino or gluon;
   

p

f

p′

f

χ

f̃ ′

εµ(q)

Figure 1: Generic Feynman diagram for the EDM (dE
f )χ of the fermion f induced by χ

exchange effects. The photon line can be attached to the sfermion f̃ ′ line, or to the χ line
if χ = χ̃±

i .

where p = q + p′ and ε(q) · p = ε(q) · p′, since ε(q) · q = 0. We use the convention
σµν = i

2 [γ
µ , γν ] = i(γµγν − gµν).

To set our coupling notations and normalisations, we write down the generic inter-

action of a chargino χ̃±
1,2, neutralino χ̃0

1,2,3,4 or gluino g̃a, collectively denoted by χ, with a
fermion f and sfermion f̃ ′

1,2, as follows:†

Lχff̃ ′ = gχff̃ ′

L ij (χ̄iPLf) f̃ ′∗
j + gχff̃ ′

R ij (χ̄iPRf) f̃ ′∗
j + h.c. (2.3)

Likewise, the interaction Lagrangians for the couplings of a photon Aµ with χ and f̃ ′ read:

LχχA = −e Qχ (χ̄γµχ)Aµ , Lf̃ ′f̃ ′A = −ie Qf̃ ′ f̃ ′∗ ↔
∂µ f̃ ′Aµ . (2.4)

Employing (2.3) and (2.4) and taking into consideration the diagrams of Fig. 1, we calculate

the one-loop fermion EDM,

(
dE

f

e

)χ

=
mχi

16π2m2
f̃ ′

j

"m
[(

gχff̃ ′

R ij

)∗
gχff̃ ′

L ij

] [
Qχ A(m2

χi
/m2

f̃ ′
j
) + Qf̃ ′ B(m2

χi
/m2

f̃ ′
j
)
]

, (2.5)

where

A(r) =
1

2(1 − r)2

(

3 − r +
2 ln r

1 − r

)

, B(r) =
1

2(1 − r)2

(

1 + r +
2r ln r

1 − r

)

, (2.6)

with A(1) = −1/3 and B(1) = 1/6. We have checked that our analytic expressions for the

one-loop EDMs are in agreement with [9] and [11].

†Here the convention for the couplings gL and gR is different from that used in [9]: gL = R∗
ik and

gR = L∗
ik.
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x
f̃ = ũ, d̃, l̃

· · · = |µ| = |Ai| = MSUSY. Working at leading order in v2/M2
SUSY, we can

then present the following compact results for all dimension 5 operators (with
q = d, u),

de

eκe
=

g2
1

12
sin θA +

(
5g2

2

24
+

g2
1

24

)

sin θµ tanβ,

dq

eqκq
=

2g2
3

9

(
sin θµ[tan β]±1 − sin θA

)
+ O(g2

2, g
2
1), (4.89)

d̃q

κq
=

5g2
3

18

(
sin θµ[tan β]±1 − sin θA

)
+ O(g2

2, g
2
1).

The notation [tanβ]±1 implies that one uses the plus(minus) sign for d(u)
quarks, gi are the gauge couplings, and eu = 2e/3, ed = −e/3. For the quarks
we quoted the explicit result only for the gluino-squark diagram that dom-
inates in this limit. All these contributions to di are proportional to κi, a
universal combination corresponding to the generic dipole size,

κi =
mi

16π2M2
SUSY

= 1.3 × 10−25cm ×
mi

1MeV

(
1TeV

MSUSY

)2

, (4.90)

which varies by a factor of a few for i = e, d, u depending on the value of the
fermion mass. The perturbative nature of the MSSM provides a loop suppres-
sion factor in (4.90) so that κi is about two orders of magnitude smaller than
the estimate (4.80). Correspondingly, the reach of the current EDM constraints
in SUSY models cannot exceed the scale of a few TeV.

In (4.90) the quark masses should be normalized at the high scale, MSUSY. To
make the explicit connection with the dipole operators in (2.16), the results of
Eq. (4.89) should be evolved down to the low-energy normalization point of 1
GeV using the relevant anomalous dimensions (see e.g. [81]). Plugging these
results into the expressions for dn, dTl and dHg and comparing them to the
current experimental bounds, we arrive at a set of constraints on θA and θµ

depending on MSUSY and tan β. In Figure 8, we plot these constraints in the
(θµ,θA)–plane for MSUSY = 500 GeV and tan β = 3. The region allowed by the
EDM constraints is at the intersection of all three bands around θA = θµ = 0.
One can observe that the combination of all three constraints strengthens the
bounds on the phases, and protects against the accidental cancellation of large
phases that can occur within one particular observable. The uncertainty in the
QCD calculations of ḡ(1)

πNN and the nuclear calculation of S(g(1)
πNN) discussed

earlier may affect the width of the dHg constraint band, but do not change its
slope on the (θµ, θA) plane.

Before we review the most common approaches to address the “overproduc-
tion” of EDMs in supersymmetric models, for completeness, we will briefly
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which varies by a factor of a few for i = e, d, u depending on the value of the
fermion mass. The perturbative nature of the MSSM provides a loop suppres-
sion factor in (4.90) so that κi is about two orders of magnitude smaller than
the estimate (4.80). Correspondingly, the reach of the current EDM constraints
in SUSY models cannot exceed the scale of a few TeV.

In (4.90) the quark masses should be normalized at the high scale, MSUSY. To
make the explicit connection with the dipole operators in (2.16), the results of
Eq. (4.89) should be evolved down to the low-energy normalization point of 1
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results into the expressions for dn, dTl and dHg and comparing them to the
current experimental bounds, we arrive at a set of constraints on θA and θµ

depending on MSUSY and tan β. In Figure 8, we plot these constraints in the
(θµ,θA)–plane for MSUSY = 500 GeV and tan β = 3. The region allowed by the
EDM constraints is at the intersection of all three bands around θA = θµ = 0.
One can observe that the combination of all three constraints strengthens the
bounds on the phases, and protects against the accidental cancellation of large
phases that can occur within one particular observable. The uncertainty in the
QCD calculations of ḡ(1)

πNN and the nuclear calculation of S(g(1)
πNN) discussed

earlier may affect the width of the dHg constraint band, but do not change its
slope on the (θµ, θA) plane.
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Higher Order Contributions to EDM’s
 two loop Barr-Zee Graphs
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Figure 5: Barr-Zee diagrams: the Hi lines denote all three neutral Higgs bosons, includ-
ing CP-violating Higgs-boson mixing, and heavy dots indicate resummation of threshold

corrections to the corresponding Yukawa couplings.
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plus chargino-neutralino loops with WW and H+-W
These diagrams become the dominant ones from the 5D operators
if the 1st and 2nd generation squarks are above a few/several TeV 

a simple expression for the stop-loop, with only 2 phases and all soft masses = MSUSY

Ellis, Lee, Pilaftsis
Pospelov ,Ritz
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Fig. 8. The combination of the three most sensitive EDM constraints, dn, dTl and
dHg, for MSUSY = 500 GeV, and tan β = 3. The region allowed by EDM constraints
is at the intersection of all three bands around θA = θµ = 0.

discuss some of the additional contributions which become important when
tan β is large, a regime favoured for consistency of the MSSM Higgs sector
with the final LEP results [98]. One simple observation is that the EDMs
of down quarks and electrons, induced by θµ at one-loop, grow linearly with
tan β (4.89). However, at the two-loop level, there are additional contributions
from the phase of the A-parameter which may also be tan β–enhanced [99].
A typical representative of the two-loop family is presented in Figure 9. At
large tan β the additional loop factor can be overcome, and these two-loop
effects have to be taken into account alongside the one-loop contributions in
(4.89). For example, the stop-loop contribution to the electron EDM in the
same limit of a large universal SUSY mass is given by

dtwo loop
e = −eκe

αY 2
t

9π
ln

[
M2

SUSY

m2
A

]

sin(θA + θµ) tanβ, (4.91)

where mA is the mass of the pseudoscalar Higgs boson, that we took to be
smaller than MSUSY, Yt " 1 is the top quark Yukawa coupling in the SM, and
κe " 0.6 × 10−25cm. For very large values of tanβ additional contributions
from sbottom and stau loops, which are enhanced by higher powers of tanβ,
also have to be taken into account [81,99].

Finally, the second, and in some sense more profound change is that at large
tan β, the observable EDMs of neutrons and heavy atoms receive significant
contributions not only from the EDMs of the constituent particles, e.g. de and
dq, but also from CP -odd four-fermion operators [100]. The relevant Higgs-
exchange diagram is shown in Figure 9. The CP violation in the Higgs-fermion
vertex originates from the CP -odd correction to the fermion mass operator in
Figure 7. These diagrams, since they are induced by Higgs exchange, receive
an even more significant enhancement by (tanβ)3. In the same approxima-
tion as before, the value of the thallium EDM induced by this Higgs-exhange
mechanism, and normalized to the current experimental limit, is given by
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Higher Order Contributions to EDM’s

gluino and Higgs mediated dimension 6  Weinberg operator 
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Figure 2: Typical Feynman diagrams for (dG)g̃ and (dG)H . The Hi lines denote all three
neutral Higgs bosons including CP-violating Higgs-boson mixing. Heavy dots indicate re-
summation of threshold corrections to the corresponding Yukawa couplings.

the two-loop Higgs-mediated Barr–Zee-type diagrams. We present detailed analytic ex-
pressions for all those contributions in this Section.

3.1 Weinberg Operator

We start by considering first the gluonic dimension-6 Weinberg operator. This is described

by the interaction Lagrangian ‡ [21]:

LWeinberg =
1

3
dG fabc Ga

ρµ G̃bµν Gc ρ
ν , (3.1)

where G̃µν = 1
2ε

µνλσGλσ is the dual of the SU(3)c field-strength tensor Gλσ. In the MSSM,
dG is induced at two-loop order by g̃ and t̃, b̃, and at three-loop order by CP-violating
Higgs-boson mixing and non-holomorphic threshold corrections to the top- and bottom-

quark Yukawa couplings. Hence, the Weinberg operator dG is the sum of two terms:

dG = (dG)g̃ + (dG)H , (3.2)

as illustrated in Fig. 2. The first term, (dG)g̃, is the quark-squark-gluino exchange contri-
bution and is given by [19]
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‡Note the coefficient dG has a different sign from that in [21]: dG = −C.
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x2(1 − u)2 ,

D = u(1 − x) + zqx(1 − x)(1 − u) + ux[z1y + z2(1 − y)] . (3.5)

Figure 3 shows the functional dependence of zq|H(z1, z2, zq)| on zq for several values of
zs ≡ z1 = z2. Our results are at variance with those presented in [19]. For instance, we

find that when zs ≤ 4, H(z1, z2, zq) becomes negative beyond certain values of zq
§.

§We thank Oleg Lebedev and Pran Nath for useful comparisons and comments regarding the loop
function H(z1, z2, zq).
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Higgs-boson mixing and non-holomorphic threshold corrections to the top- and bottom-

quark Yukawa couplings. Hence, the Weinberg operator dG is the sum of two terms:
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Higher Order Contributions to EDM’s

CP-odd four Fermion interactions 

The loop function H(z1, z2, zq) simplifies considerably in specific regions of the pa-
rameter space. Specifically, if z1 = z2 = zs and the limit zq → 0 is taken, the following

function may be defined:

Ĥ0(zs) ≡ lim
zq→0

zqH(zs, zs, zq)

=
1

18(1 − zs)4

[
2(1 − zs)(1 + 11zs) − (1 − 16zs − 9z2

s) ln zs

]
, (3.6)

with Ĥ0(1) = 5/108. Hence, for zq <∼ 0.1 and (z2 − z1)2/(z2 + z1)2 % 1, the loop function

H(z1, z2, zq) may be approximated as follows:

H(z1, z2, zq) ≈
1

zq

[

Ĥ0

(z1 + z2

2

)
+

(z2 − z1)2

(z1 + z2)2
Ĥ1

(z1 + z2

2

)]

, (3.7)

where

Ĥ1(zs) ≡
1

108(1 − zs)6

[
(1 − zs)(1 + 7zs + 295z2

s + 177z3
s )

+6z2
s(21 + 50zs + 9z2

s ) ln(zs)
]

, (3.8)

with Ĥ1(1) = 11/1080.

The second term in (3.2), (dG)H , is the neutral Higgs contribution [20,21], which may
be cast into the form:

(dG)H =
4
√

2 GF g3
s

(4π)4

∑

q=t,b

[
∑

i

gS
Hiq̄q gP

Hiq̄q h(ziq)

]

, (3.9)

where ziq ≡ M2
Hi

/m2
q and

h(z) =
1

4

∫ 1

0
dx

∫ 1

0
du

u3x3(1 − x)

[x(1 − ux) + z(1 − u)(1 − x)]2
, (3.10)

with h(0) = 1/16. We note that for the loop function h(z) we follow [20], whose result is
smaller by a factor 2 than the one given in [21].

3.2 CP-Odd Four-Fermion Interactions

CP-odd four-fermion interactions play a significant role in the EDMs. These interactions
may be generically described by the Lagrangian

L4f =
∑

f,f ′

Cff ′(f̄f)(f̄ ′iγ5f
′) . (3.11)

9

f f

f ′ f ′

Hi

Figure 4: Feynman diagrams for CP-odd four-fermion operators. The Hi line denotes all
three neutral Higgs bosons including CP-violating Higgs-boson mixing. Heavy dots indicate
resummation of threshold corrections to the corresponding Yukawa couplings.

The CP-odd four-fermion operators in (3.11) are generated by CP-violating neutral Higgs-
boson mixing in the t-channel and by CP-violating Yukawa threshold corrections, see Fig. 4.
The combined effect of these two contributions gives rise to the CP-odd coefficients

(Cff ′)H = gf gf ′

∑

i

gS
Hif̄ f gP

Hif̄ ′f ′

M2
Hi

, (3.12)

where gf = mf/v with v = 2MW/g for f = l, d, u. Possible sub-dominant contributions
from box diagrams [17] have been neglected.

3.3 Barr–Zee Graphs

Finally, there are additional Higgs-boson quantum effects that contribute significantly to
the EDMs beyond the one-loop level. For the Thallium EDM, these are the two-loop

Barr–Zee graphs, denoted as (dE
e )H , and the CP-odd electron-nucleon interaction LCS

=
CS ēiγ5e N̄N [12,13], which is induced by CP-violating gluon-gluon-Higgs couplings, (CS)g.

As shown in Fig. 5, the electron EDM (dE
e )H is induced by CP-violating phases of third-

generation fermions and sfermions and of charginos. More explicitly, (dE
e )H is given by

(
dE

e

e

)H

=
∑

q=t,b

{
3αem Q2

q me

32π3

3∑

i=1

gP
Hie+e−

M2
Hi

∑

j=1,2

gHiq̃∗j q̃j
F (τq̃ji)

+
3α2

em Q2
q me

8π2s2
WM2

W

3∑

i=1

[
gP

Hie+e−gS
Hiq̄q f(τqi) + gS

Hie+e−gP
Hiq̄q g(τqi)

] }

+
αem me

32π3

3∑

i=1

gP
Hie+e−

M2
Hi

∑

j=1,2

gHiτ̃∗
j τ̃j

F (ττ̃ji)

+
α2

em me

8π2s2
WM2

W

3∑

i=1

[
gP

Hie+e−gS
Hiτ+τ− f(ττ i) + gS

Hie+e−gP
Hiτ+τ− g(ττ i)

]
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neutral Higgs- boson mixing in the t-channel and 
by CP-violating Yukawa threshold corrections

for f ’=e,  f=d,  tanβ3 enhancement

to provide an estimate: simple expressions, with only 2 phases and all soft masses = MSUSY

dd

γ

d̃R d̃R

d d

d̃L d̃L

g̃ g̃

Fig. 7. One-loop SUSY threshold corrections in the down quark sector induced by
a gluino-squark loop. On the left, a threshold correction generating Im(md), while
on the right the analogous diagram for the EDM. The CP -violating source enters
via the highlighted vertex, squark-mixing in the present case.

Going to an even more restrictive framework, by assuming a common phase
for the gaugino masses and another common phase for Ai reduces the number
of independent CP violating parameters to two. Using phase redefinitions, one
can choose the phase of the gaugino mass to be zero, and use θA = Arg(A)
and θµ = Arg(µ) as the basis for parametrizing CP violation.

It has been known for over twenty years that even in the absence of new
flavour physics, large EDMs can be induced at the one-loop level within a
single genaration [95,96]. Indeed, one would anticipate large EDMs as both of
the reasons that rendered di(δKM) very small, namely high loop order and also
mixing angle/Yukawa coupling suppression, are not present for EDMs induced
by the phases of the soft-breaking parameters.

Figure 7 exhibits examples of one-loop diagrams at the supersymmetric thresh-
old that generate non-zero contributions to the CP -odd Lagrangians (2.14)
and (2.16). If we leave aside the problematic s-quark CEDM, then at one-
loop we can concentrate on diagrams involving just the first generation of
quarks and leptons. Within the parametrization described above, the phases
residing in µ and A permeate the squark, selectron, chargino and neutralino
spectrum, which in the mass eigenstate basis translates into complex phases in
the quark–squark–gluino and fermion–sfermion-chargino(neutralino) vertices.
To make this explicit, for a moment let us truncate the flavour space to one
generation and write down the expression for the 2×2 d-squark mass matrix
at the electroweak scale in the basis of d̃L and d̃R,

M2
d̃ =




m2

Q + O(v2) −md(µ tanβ + A∗
d)

−md(µ∗ tanβ + Ad) m2
D + O(v2)



 , (4.86)

where we further assume that the soft masses m2
Q and m2

D are large relative
to the weak scale, and thus we can ignore subleading O(v2) corrections to
the diagonal entries. Similar expressions can be written for the selectron mass
matrix with the obvious substitutions in (4.86), and for the u squark, where

43

A

t̃

γ

γ

e

d

A

d d

Fig. 9. Additional corrections to the EDMs. On the left two-loop Barr-Zee type
graphs mediated by a stop-loop and a pseudoscalar Higgs, while on the right
we have a Higgs-mediated electron-quark interaction Cde with CP violation at
the Higgs-quark vertex. There is a second diagram with CP -violation at the
Higgs-electron vertex mediated by H.

dTl

[dTl]exp
!

tan3 β

330

(
100GeV

mA

)2 [
sin θµ + 0.04 sin(θµ + θA)

]
. (4.92)

Notice that this result does not scale to zero as MSUSY → ∞. Although just
an O(10−3 − 10−2) correction for tanβ ∼ O(1), these Higgs–exchange contri-
butions become very large for tanβ ∼ O(50) [100,101,81] (see also [102]).

4.2.1 The SUSY CP problem

Figure 8 exemplifies the so-called SUSY CP problem: either the CP -violating
phases are small, or the scale of the soft-breaking masses is significantly larger
than 1TeV, or schematically,

δCP ×
(

1TeV

MSUSY

)2

< 1. (4.93)

The need to provide a plausible explanation to the SUSY CP problem has
spawned a sizable literature, and the following modifications to the SUSY
spectrum have been discussed.

• Heavy superpartners. If the masses of the supersymmetric partners exhibit
certain hierarchy patterns the SUSY CP problem can be alleviated. One
of the more actively discussed possibilities is an inverted hierarchy among
the slepton and squark masses, i.e. with the squarks of the first two genera-
tions being much heavier than the stops, sbottoms and staus, ie. (M2

S)ij '
(M2

S)i3, (M2
S)33, where i, j = 1, 2 is the generation index [103]. It is prefer-

able to have masses of the third generation sfermions under the TeV scale
because they enter into radiative corrections to the Higgs potential, and
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Figure 6: Feynman graphs contributing to (CS)g: the Hi lines denote all three neutral Higgs
bosons, including CP-violating Higgs-boson mixing, and heavy dots indicate resummation

of threshold corrections to the corresponding Yukawa couplings.

There are subleading two-loop contributions which we neglect [28,29]. Instead, we consider

the gluon-gluon-Higgs contribution to CS, see Fig. 6. This is given by

(CS)g = (0.1 GeV)
me

v2

3∑

i=1

gS
Higgg

P
Hiēe

M2
Hi

, (3.15)

where 〈N |αs

8πGa,µνGa
µν |N〉 = −(0.1 GeV)N̄N is used, and we use the tree-level value gP

Hiēe =
− tan β Oai. In addition, gS

Higg is the scalar form factor Sg
i in the heavy (s)quark limit:

gS
Higg =

∑

q=t,b





2 xq

3
gS

Hiq̄q −
v2

12

∑

j=1,2

gHiq̃∗j q̃j

m2
q̃j




 , (3.16)

where xt = 1 and xb = (1−0.25κ) with κ ≡ 〈N |mss̄s|N〉/220 MeV % 0.50±0.25 [cf. (4.4)].

Apart from EDMs, the two-loop Barr-Zee graphs also generate CEDMs for the u and
d quarks. These additional contributions are given by

(
dC

ql

)H
= −

∑

q=t,b

{
gs αs mql

64π3

3∑

i=1

gP
Hiq̄lql

M2
Hi

∑

j=1,2

gHiq̃∗j q̃j
F (τq̃ji)

+
gs αs αem mql

16π2s2
WM2

W

3∑

i=1

[
gP

Hiq̄lql
gS

Hiq̄q f(τqi) + gS
Hiq̄lql

gP
Hiq̄q g(τqi)

] }

, (3.17)

with ql = u, d.

4 Thallium, Neutron, Mercury and Deuteron EDMs

In this Section we present analytic expressions for the Thallium, neutron, Mercury and
deuteron EDMs in terms of the constituent particle (C)EDMs and the coefficients of the

12

This gives important contributions to dTl through the 
electron nucleon CP odd operators

⊃

and finally CP -odd electron-nucleon couplings,

LeN = C(0)
S ēiγ5eN̄N + C(0)

P ēeN̄ iγ5N + C(0)
T εµναβ ēσµνeN̄σαβN

+C(1)
S ēiγ5eN̄τ 3N + C(1)

P ēeN̄iγ5τ
3N + C(1)

T εµναβ ēσµνeN̄σαβτ 3N. (2.6)

In certain rare cases, CP -odd nucleon-nucleon forces are not mediated by
pions, in which case the effective Lagrangian must be extended by a variety
of contact terms e.g. N̄NN̄iγ5N , and the like.

The dependence of the observable EDMs on the corresponding Wilson coef-
ficients relies on atomic and nuclear many-body calculations which would go
beyond the scope of this review to cover here (see the reviews [17,18] for fur-
ther details). However, we will briefly summarize the current status of these
calculations, before turning to our major focus which is the calculation of these
coefficients in terms of higher scale CP -odd sources.

As alluded to earlier on, it is convenient to split the discussion into three
parts, corresponding roughly to the three classes of observable EDMs which
currently provide constraints at a similar level of precision; namely: EDMs
of paramagnetic atoms and molecules, EDMs of diamagnetic atoms, and the
neutron EDM.

• EDMs of paramagnetic atoms – thallium EDM

Paramagnetic systems, namely those with one unpaired electron, are primarily
sensitive to the EDM of this electron. At the nonrelativistic level, this is far
from obvious due to the Schiff shielding theorem which implies, since the atom
is neutral, that any applied electric field will be shielded and so an EDM of the
unpaired electron will not induce an atomic EDM. Fortunately, this theorem
is violated by relativistic effects. In fact, it is violated strongly for atoms with
a large atomic number, and even more strongly in molecules which can be
polarised by the applied field. For atoms, the parameteric enhancement of the
electron EDM is given by [19,20,18],

dpara(de) ∼ 10
Z3α2

J(J + 1/2)(J + 1)2
de, (2.7)

up to numerical O(1) factors, with J the angular momentum and Z the atomic
number. This enhancement is significant, and for large Z, the applied field
can be enhanced be a factor of a few hundred within the atom. This feature
explains why atomic systems provide such a powerful probe of the electron
EDM, since the “effective” electric field can be much larger than one could
actually produce in the lab.
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where xt = 1 and xb = (1−0.25κ) with κ ≡ 〈N |mss̄s|N〉/220 MeV % 0.50±0.25 [cf. (4.4)].
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with ql = u, d.
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• 1-loop diagrams: 

   either 1st and 2nd sfermion heavy (> TeV) or Arg (Af) < 0.01 

•  2-loop diagrams involve 3rd generation sfermions and gauginos/ Higgsinos
    ==> if all scalars heavy, still gaugino loops relevant

issue. Thus, one may need to relax the constraints we obtain on CP-violating phases that are
driven by the 199Hg results in light of on-going theoretical nuclear structure developments.

With these caveats in mind, we summarize our main findings here:

(a) A primary impact of the new 199Hg result is to impose significantly more stringent
constraints on the relative phase φ3 between the gluino soft supersymmetric-breaking
mass and the µ parameter (see below), while generating a strong correlation between
this phase and the phase of the soft-breaking triscalar couplings involving first gener-
ation sfermions.

(b) The neutron and Thallium EDM limits have a stronger impact on the relative phase
φ2 between the wino soft mass parameter and µ than does the 199Hg bound, but at
present there does not exist any strong correlation between φ2 and other phases.

(c) A future neutron EDM limit that is roughly 100 times stronger than present would both
tighten the present correlations between φ3 and the triscalar phases while inducing
strong correlations between φ2 and other phases.

(d) In the limit of heavy first and second generation sfermions, the “bino” phase φ1 is
essentially unconstrained by present EDM bounds. A future neutron or electron EDM
measurement with ∼ 100 times better sensitivity would probe the impact of this phase
at a level of interest for cosmology.

In the remainder of the paper, we organize the discussion of our analysis leading to the
findings above as follows: In section II, we give a general discussion about the CP-violating
phase structure of the MSSM, we address how each phase impacts the various EDMs, and
we outline the eneral setup of our analysis. In section III, we investigate in detail how each
phase is constrained by current EDM bounds, we study the correlations between the various
EDM bounds on the most strongly constrained phases, namely φ2, φ3, and φu,d, and we
discuss the phenomenology implications of the other loosely constrained phases. Finally, we
devote section IV to our summary and conclusions.

II. CP-VIOLATING PHASES IN MSSM AND THE SETUP FOR ANALYSIS

The Minimal Supersymmetric Extension to the Standard Model of particle physics intro-
duces a plethora of new and unknown parameters. Many of these parameters are connected

TABLE I: Summary of how the CP-violating sources in MSSM generate various CP-odd operators
at one-loop and two-loop level.

CP-violating phases one-loop contribution two-loop contribution

φe,u,d d1−loop
u,d,e ,d̃1−loop

u,d , Cff ′ no

φµ,c,s no no

φτ,t,b no d2−loop
u,d,e (t̃, b̃, τ̃), d̃2−loop

u,d (t̃, b̃, τ̃), d3G

φ1,2 d1−loop
u,d,e ,d̃1−loop

u,d , Cff ′ d2−loop
u,d,e (χ±,0)

φ3 d1−loop
u,d ,d̃1−loop

u,d , Cff ′ d3G

4

In Summary: SUSY CP framework

to new sources of CP or flavor violation, or both. Although EDMs could, in principle, be
induced by all CP-violating parameters including both flavor-conserving and flavor-violating
ones, they are most sensitive to flavor-conserving CP-violating phases, including those asso-
ciated with the bilinear coupling b and Higgsino mass term µ in the Higgs-Higgsino sector,
the soft-supersymmetry breaking Majorana masses M1, M2, and M3 in the gaugino sector,
and the trilinear couplings Af in the sfermion sector.

This notwithstanding, not all the new CP violating phases appearing in the MSSM are
physical. In fact, there exist two transformations that can be employed to rotate away two
phases [50]. We choose a convention where µ and b are real, and the remaining phases
mentioned above are all physical. In particular, the physical phases include the phases
φ1,2,3 of the gaugino masses M1,2,3, and the phases φu,d,e, φc,s,µ, and φt,b,τ of the sfermion
trilinear couplings Au,d,e, Ac,s,µ, and At,b,τ , respectively. As shown in Table I, these phases
play different roles in generating various CP-odd operators, including the electron EDM
de, quark EDM dq and Chromo-EDM d̃q, the Weinberg 3-gluon operator d3G, and the 4-
fermion CP-odd operator Cff ′

7. These CP-odd operators are responsible for the EDMs of
the neutron, as well as of that of the Thallium and Mercury atoms, as summarized in Table
II. In particular, in the MSSM the Thallium EDM is dominated by the electron EDM
operator de, and possibly by the four-fermion operator Cff ′ if tanβ > 30 [42]; the neutron
EDM, which we compute here using QCD sum rule results [45], mainly stems from the EDM
and chromo-EDM operators of the u and d quarks, du,d and d̃u,d, and from the 3-gluon term
d3G; lastly, the Mercury EDM is generated primarily by the chromo-EDM operators d̃u,d
[19]. A combination of Table I and Table II provides information on how each CP-violating
phase is constrained by which experimental EDM bound.

Among all contributions, some of the dominant ones stem from the one-loop induced
EDM and Chromo-EDM operators de, du,d, and d̃u,d. These contributions always involve the
first-two generations of sleptons and squarks, and therefore are asymptotically suppressed
in the limit where these scalar fermions are very heavy [51]. Obviously, the effect of the CP-
violating phases φu,φd,φs,φc,φe,φµ from the first-two generations sfermions are completely
suppressed in this situation, and would not show up in any other observable signature. In
contrast, the effects of other phases, including φ1,2,3 in the gaugino sector and φt,φb,φτ

in the third-generation sfermion sector (thanks to larger Yukawa couplings), are not as
strongly suppressed in the decoupling limit of heavy first and second generation sfermions,
and they might induce interesting effects that could manifest themselves at colliders or in
other experiments sensitive to CP violation.

With these considerations in mind, we study cases where the sfermion masses for the first
two generations are either light or heavy. For each case, we explore in detail the mass- and
tanβ-dependence of the EDM bounds on each individual phase. We choose a set of mass

TABLE II: Summary of relevant CP-odd operators of neutron, Thallium, and Mercury atom EDMs.

dn dTl dHg

du,d, d̃u,d, d3G, Cff ′ de, Cff ′ de, d̃u,d, Cff ′

7 For the specific form of each of these operators, see, e.g. Refs. [29].
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FIG. 1: Constraints on the CP violating phases φ1, φ2 and φ3 (from top to bottom) versus (mL,R)1
(left panels) and versus M1, 2, 3 (right panels) from experimental limits on the Mercury (black

solid lines), Tallium (red dotted) and neutron (blue dashed) EDMs, in the case of light first-two
generations of sfermions (case I, see Eq. 3).
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parameters corresponding to a light spectrum as the reference point (we call this “Case
I”); we then study the effect on the constraints as the relevant mass scales increase (the
limiting case is indicated as “Case II”). The reference values we choose for the relevant
supersymmetric parameters M1,2,3, µ, Af of all flavors f , the charged Higgs mass MH± , and
the third generation sfermion masses mL3,R3

in both cases are as follows:

|M1| = 150 GeV, |M2| = 250 GeV, |M3| = 550 GeV,

|µ| = 225 GeV, |Af | = 175 GeV,MH± = 500GeV,

mL3
= mR3

= 200 GeV, (2)

We set the first-two generation sfermion masses, in the two cases, to:

CASE I : mL1,2
= mR1,2

= 200 GeV, (3)

CASE II : mL1,2
= mR1,2

= 10 TeV. (4)

In the study of each phase, we look at how EDM constraints are affected by changes in the
relevant mass scale, keeping all other masses set to their reference values.

III. DETAILED ANALYSIS

In the present study, we classify the MSSM CP-violating phases under consideration into
two groups,

(i) phases in the higgsino-gaugino sector: φ1, φ2, and φ3, and

(ii) phases in the sfermion sector: φu, φd, φe, φc, φs, φµ, φt, φb, φτ ,

and we study the two groups of phases individually.

A. Phases in the higgsino-gaugino sector: φ1, φ2, and φ3

These three phases contribute to the EDM and Chromo-EDM operators both at the one-
and two-loop level; we therefore discuss here the constraints on them for both cases: (I)
with light and (II) with heavy first-two sfermion generations.

Light sfermions

In the case where the first-two generation sfermions are light and one-loop EDMs and
Chromo-EDMs are not suppressed, the phases φ1 and φ2 induce contributions to de, while
φ1,2,3 generate (du,d, d̃u,d), and the four-fermion CP-odd operators Cff ′ . In addition, φ3 also
induces a non-zero contribution to the 3-gluon operator d3G at two-loop order [53]

We find that as far as the constraints on φ1 are concerned, the Mercury EDM, with its
newest experimental bound, puts much more stringent bounds – namely by a factor of 10
or more on most of the parameter space we consider – than those from the neutron and
Thallium EDM limits. We illustrate the resulting limits in Figure 1, top panels. For the
phase φ2, instead, the Mercury EDM puts less stringent limits, by a factor of a few, than
the current Thallium and neutron EDM bounds, illustrated in Figure 1, middle panels. We
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FIG. 2: Curves of constant values for the Thallium (red) and neutron (blue) EDM as a function of

M1 and MH± in the case of heavy first-two generations of sfermions (case II) as in Eq. 4. Because
current EDM limits do not constrain φ1 in this case, curves correspond to representative future

EDM sensitivities. Solid and dashed curves correspond, respectively, to tan β = 3 and 60.
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FIG. 3: The M2- and MH±- dependent constraints on φ2 from neutron and Thallium EDMs in the
case of heavy first-two generations of sfermions (case II) as in Eq. 4.

find that this is due to the cancellation of φ2 contributions to the electron EDM and quark
chromo-EDMs that generate Mercury EDM. In fact, in a different mass region where the
cancelation is not significant, the Mercury EDM constraint on φ2 may be comparable or even
stronger than the current Thallium and neutron EDM bounds. For φ3, the new Mercury
EDM bound puts a stronger constraint than the neutron EDM bound, while the current
Thallium EDM bound is not stringent enough to put any constraint on φ3, due to suppressed
contributions from Cff ′ (see Figure 1, lower panels).

Our results as a function of the relevant mass scales are summarized in Figure 1. In the
upper penals, we show how the Mercury EDM constraint on φ1 depends on tanβ (set to
3 and to 60 in the upper and lower curves, respectively) and on the relevant mass scales
(mL,R)1 (left panel) and M1 (right panel). The most important impact of φ1 on the Mercury

EDM is through the neutralino one-loop contribution to the quark Chromo-EDM d̃χ
0

u,d, where
the external gluon is only attached to squarks in the loop. In this case, the dependence on

8

Interesting scenario for bino-induced EWBS

The  M2, M3 phases still restricted to be below a few 10-2π for 1 TeV masses
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FIG. 9: The (mL,R)3-dependent constraints on φb from neutron and Mercury EDMs.

to the quark EDMs, Chromo-EDM s, 3-gluon operator, and 4-fermion operators at the two-
loop level, and they all induce contributions to the EDMs of the neutron, Thallium and
Mercury atoms. Our numerical study indicates that the current Thallium EDM bound is
in general weaker than neutron and Mercury EDM bounds in constraining φt, and does not
put any constraint on φb. The relative strength of the neutron and Mercury EDM bounds

TABLE III: Summary of how the CP-violating phases in MSSM are constrained by current EDM

bounds of neutron, Thallium, and Mercury atom, for both case I (with light first-two generations
of sfermions as in Eq. 3) and case II (with heavy first-two generations of sfermions as in Eq. 4).
We refer as ”weakly constrained” if the phase can reach π/2 with relevant mass scales within about

1 TeV, and ”strongly constrained” otherwise.

CASE I CASE II

phases dTl dn dHg dTl dn dHg

φ1 weakly weakly weakly w. small tanβ not not not

φ2 strongly strongly strongly weakly w. small tanβ weakly w. small tanβ not

φ3 not strongly strongly not weakly w. small tanβ weakly

φe weakly not not not not not

φu not weakly strongly not not not

φd not strongly strongly not not not

φµ not not not not not not

φc not not not not not not

φs not not not not not not

φt weakly weakly weakly weakly weakly weakly

φb not weakly weakly not weakly weakly

φτ not not not not not not
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FIG. 7: The (mL,R)1- and M3- dependent constraints on φd from neutron and Mercury EDMs
in the case with light first-two generations of sfermions as in Eq. 3. The tanβ = 3 is used in

making the plot. The constraints corresponding to other values of tanβ are not shown, as the tanβ
dependence is found to be rather weak.
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FIG. 8: The (mL,R)3-dependent constraints on φt from neutron, Thallium, and Mercury EDMs.

than M1, due to the dominant neutralino one-loop contribution. Constraints on this phase
are rather weak and they reach π/2 for mL,R1

of only 500 GeV, and for M1 of 1.15 TeV.
As far as constraints on φu and φd are concerned, the new experimental limit on the

Mercury EDM places a more stringent constraint (by a factor of a few) than the current
neutron EDM bound. As shown in Figs. 6 and 7, which display the (mL,R)1- and M3-
dependent constraints on φu and φd, respectively, the phase φu(φd) is constrained to be
≤ 0.07π(0.04π) for (mL,R)1 ≤ 1.2 TeV, and 0.1π(0.02π) for M3 ≤ 1.55 TeV.

The phases associated with the third generation sfermions φt, φb, and φτ do not directly
induce an electron or quark EDM, or a Chromo-EDM at the one-loop level, and therefore
there is no difference here between the case with light and heavy first-two generations of
sfermions. The third generation CP violating squark phases contribute to the electron and
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The φt and φb are rather loosely bounded and can reach π/2 for (mL,R)3 of a few hundred GeV. 

Li, Profumo,
Rmasey-Musolf
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CP Violation in the Higgs Sector 

Main effect of CP-Violation is the mixing
of the three neutral Higgs bosons

In the base

MSP gives the mixing between would-be 
CP-odd and CP-even sates,  predominantly 
governed by stop induced loop effects 

Gluino phase relevant at two-loop level. Guagino effects may be enhanced for large tan beta
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Comments on Higgs Boson Mixing
•mA no longer a physical parameter, but the charged Higgs mass can be 
used as a physical parameter, together with

•  Elements of matrix O are similar to                                in the CP-conserving case. 
    But third row and column are zero in the non-diagonal elements in such a case.

• Three neutral Higgs bosons can now couple to the vector bosons in a way 
similar to the SM Higgs. 

• Similar to the decoupling limit in the CP-conserving case:
   in the decoupling limit, mH+ >> MZ, 

The effective mixing between the lightest Higgs and the heavy ones is zero 
H1 is SM-like

  The mixing in the heavy sector H2/H3 still relevant
 non decoupling of CP-violating vertex and  self energy effects
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Higgs Production in the diphoton channel in the MSSM
• Charged scalar particles with no color charge can change di-photon rate without  
modification of the gluon production process

Possible departures in the production and decay rates at the LHC

!  Through SUSY particle effects in loop induced processes 

!  Through enhancement/suppression of the Higgs-bb and Higgs-di-tau 
coupling strength via mixing in the Higgs sector :                              

This affects in similar manner BR’s into all other particles  

squarks squarks and sleptons 

~ 

~ 

~ 
charginos 

!Through vertex corrections to Yukawa couplings: different for bottoms and taus
This destroys the SM relation BR(h     bb)/BR(h    !!) ~ mb2/m!2

!Through decays to new particles (including invisible decays)
This affects in similar manner BR’s to all SM particles 

Saturday, January 5, 2013

Possible departures in the production and decay rates at the LHC

!  Through SUSY particle effects in loop induced processes 

!  Through enhancement/suppression of the Higgs-bb and Higgs-di-tau 
coupling strength via mixing in the Higgs sector :                              

This affects in similar manner BR’s into all other particles  

squarks squarks and sleptons 

~ 

~ 

~ 
charginos 

!Through vertex corrections to Yukawa couplings: different for bottoms and taus
This destroys the SM relation BR(h     bb)/BR(h    !!) ~ mb2/m!2

!Through decays to new particles (including invisible decays)
This affects in similar manner BR’s to all SM particles 

Saturday, January 5, 2013

Light staus with large mixing 
[sizeable µ and tan beta]:

enhancement of the
Higgs to di-photon decay rate
- up to 50 % with SM-like ZZ/WW

Additional modifications of the Higgs rates into gauge bosons via stau induced 
mixing effects in the Higgs Sector: 

Aτ induced radiative corrections to the 
mixing angle α

Additional modifications of the Higgs rates into gauge bosons 
via stau induced mixing effects in the Higgs sector

me3= mL3 

mStau~ 90 GeV;  mh~ 125 GeV

  Important A! induced radiative corrections to the mixing angle "  

Small variations in BR [H to bb] induce
 significant variations in the other Higgs BR’s

M. C. Gori, Shah, Wagner,’11 + Wang’12

Similar results for example within pMSSM/MSSM fits:    Arbey, Battagllia, Djouadi,Mahmoudi ’12
                                                                              Benbrik, Gomez Bock, Heinemeyer, Stal, Weigein, Zeune’12 

ghb̄b,hτ+τ− ∝ − sinα/ cosβ

mA = 1 TeV
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Strong constraints 
from 

Electron EDM 
via phase in Aτ
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Figure 5: Barr-Zee diagrams: the Hi lines denote all three neutral Higgs bosons, includ-
ing CP-violating Higgs-boson mixing, and heavy dots indicate resummation of threshold

corrections to the corresponding Yukawa couplings.
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Hie+e−gS
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j
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+
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(3.13)

with τxi = m2
x/M

2
Hi

. The Higgs-mediated two-loop quark EDMs (dE
q=u,d,s)

H are also cal-
culated similarly. In the above, the two-loop functions F (τ), f(τ), and g(τ) are given
by

F (τ) =
∫ 1

0
dx

x(1 − x)

τ − x(1 − x)
ln

[
x(1 − x)

τ

]
,

f(τ) =
τ

2

∫ 1

0
dx

1 − 2x(1 − x)

x(1 − x) − τ
ln

[
x(1 − x)

τ

]
,

g(τ) =
τ

2

∫ 1

0
dx

1

x(1 − x) − τ
ln

[
x(1 − x)

τ

]
. (3.14)
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Final Comments

Supersymmetry, as a paradigm for New Physics, 
provides an excellent ground to test effects of additional sources 

of Flavor and CP violation 

The MSSM can accommodate solutions to some of the puzzles in 
particle physics, but is most probably too simplistic

Various MSSM extensions: models with extra singlets, additional gauge groups, etc, 
extend further the particle content of the SM 

and imply larger number of new parameters including many additional CP phases

New CP phases are a reasonable expectation in NP models and 
EDM experiments open the opportunity to explore scales of new physics 

well beyond the reach of the LHC
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