Electron Neutrino Cross-sections

"How Important are they Really?"

Ian Taylor, University of Warwick

nuSTORM Phone Meeting - 01/18/13

Short Answer

- Really quite important!
 - They have had a major effect on past/present osc. experiments (T2K, MINOS, NOVA).
 - They will probably have the same effect on future experiments (LBNE, LBNO, T2HK).
 - Dark matter too (understanding the neutrino background will soon become very important).
 - They really aren't very well understood.
 - Offer the potential for a lot of thesis topics.
- Some people find them to be quite fun too...

State of the Art - ν_{μ}

CCQE
$$v_{\mu} + n \rightarrow \mu^{-} + p$$

Single Pion v_{μ} + N -> μ + N' + π

Inclusive $v_{\mu} + N \rightarrow \mu^{-} + N' + ...$

Doesn't look too bad, but...

18/01/2013

State of the Art - v_{μ}

CCQE
$$v_{\mu} + n \rightarrow \mu^{-} + p$$

Single Pion $v_{\mu} + N \rightarrow \mu^{-} + N' + \pi$

Inclusive v_{μ} + N -> μ - + N' + ...

Anti- ν_{μ} is much sparser, and ...

State of the Art - v_e

- There are no measurements in the regions of interest.
- All experiments rely on either $\nu_{\mu}/\nu_{\rm e}$ ratio, or 'extrapolating' $\nu_{\rm e}$.

18/01/2013

Neutrino Interaction vs Final State Particles

- Each experiment 'tunes M_A , and none of them agree.
- Instead of trying to force agreement, we must acknowledge that we have been measuring different things!

Experiment	Target	Cut in Q^2 [GeV ²]	$M_A[GeV]$
K2K ⁴	oxygen	$Q^2 > 0.2$	1.2 ± 0.12
K2K ⁵	carbon	$Q^2 > 0.2$	1.14 ± 0.11
MINOS ⁶	iron	no cut	1.19 ± 0.17
MINOS ⁶	iron	$Q^2 > 0.2$	1.26 ± 0.17
MiniBooNE ⁷	carbon	no cut	1.35 ± 0.17
MiniBooNE ⁷	carbon	$Q^2 > 0.25$	1.27 ± 0.14
NOMAD ⁸	carbon	no cut	1.07 ± 0.07

Juszczak et al., PR C82, 045502 (2010)

Contention between MiniBooNE & NOMAD

• The models we use for x-secs are increasingly obviously wrong:

• Each experiment 'tunes' M_A , and none of them agree!

Nuclear Effects to the Rescue?

 possible explanation: extra contributions from multi-nucleon correlations in the nucleus (all prior calcs assume indep particles)

Martini et al., PRC **80**, 065001 (2009)

 could this explain the difference between MiniBooNE & NOMAD?

NOMAD: μ & μ + p

MiniBooNE: $\mu + no \pi$'s + any # p's

jury is still out on this

need to be clear what we mean by "QE"

Neutrino Interaction vs Final State Particles

- Instead, record exactly what you're measuring.
 - Report x-sec in terms of final states, not CCQE, single pion, DIS, etc.
 - Make a doubly differential measurement.

Aguilar-Arevalo et al., PRD 81, 092005 (2010)

Which Measurements to Make?

- Theorist answer:
 - 'Free Nucleon' sample, removes nuclear effects,
 e.g. LH2
 - Multiple target materials, with a range of Z
 - Doubly differential
- Experimentalist answer:
 - 'Final state' particles
 - Allow accurate prediction of event topology in future experiments

Difficulties of Measurements

- Even with the excellent characteristics of a stored muon beam:
 - There are many measurements to make.
 - One detector is not going to be sufficient.
- Multiple targets means multiple detectors or interchangeable target regions.
 - Target probably not instrumented, how do you decide where event came from?

Example from T2K's ND280

- Two regions: Tracker + ECal & π^0 Detector
 - ECal & P0D designs were changed to accommodate 'cross-check' measurements
 - Both were asked to reconstruct and measure
 50 MeV photons and 2 GeV electrons.
 - "If you're not breeding for something, you're breeding against it"
 - Primary measurements suffered due to secondary requirements.

Proposed Software

- A framework for evaluating detector designs:
 - Simulate a rough detector geometry using GENIE and GEANT4
 - Fake a reconstruction:
 - If <experiment> can do it, so can we.
 - Evaluate the success of measuring given final state channels, e.g. e^- + p, single π^0 ...

Goal

- Produce a 'confusion matrix' for each detector design:
 - Estimate resolutions on: E_{ν} , θ_{μ} , etc.
 - Probability of missing extra particles: p, n, π^0
- Find a complementary set of detectors, covering 'all' measurements with reasonable efficiency
 - Cost considerations, detector technologies...

Conclusions

- Neutrino cross-sections are important.
 - They aren't well known, and the models aren't very good.
 - Especially true for electron neutrinos.
- vSTORM could be a perfect solution, but we need to build the right detectors.
- Ed Santos will now present the work to date.