Our Evolving Understanding of Tokamak Confinement Physics:

Thoughts for the 80th Birthday of Roald Z. Sagdeev

P.H. Diamond

CMTFO and CASS, UCSD and WCI Center for Fusion Theory, NFRI, Korea

Outline

A.) I) Foundations: Sagdeev's Greatest Hits

→ The Building Blocks of Confinement Theory

2) Where Things Stand Today:

→ Current Status of Our Understanding: An OV

- B.) A Recent Perspective:
 - \rightarrow Heat Flux 'Jamitons' and the Formation of the E x B staircase
 - with Yusuke Kosuga and Ozgur Gurcan

C.) Looking Ahead

AI.) Sagdeev's Greatest Hits in MFE

- i.) Microstability Theory
- basic physics of drift and ITG modes
 - \rightarrow early mid 60's
 - → with: Rosenbluth, Rudakov, Moiseev, Coppi, ... (Coppi, MNR, RZS '67)

achieved:

- 'inverse dissipation' mechanism for electron drift waves
- 'negative compressibility' ITG modes
- first effects of magnetic geometry

Defined fundamental agents of core anomalous transport: ITG, CTEM

- ii.) Quasilinear (Mean Field) Theory
- \rightarrow early mid 60's
- \rightarrow with: Vedenov, Velikov, ...

achieved:

- mean field theory for Vlasov system
- basic wave-particle energetics
- time scale hierarchy and link to chaos

➔ Formulated basis of all transport models currently in use in MFE community

iii.) Weak Turbulence Theory, especially nonlinear wave-particle interaction

 \rightarrow early - mid 60's => Trieste lectures

 \rightarrow with: Galeev, Rudakov, Zakharov, Shapiro, ...

achieved:

 complete perturbative theory of non-linear dynamics, with wave-wave and wave-particle interaction on an equal footing

- initial ideas on quasi-particle models

set foundations for subsequent work on granulations, strong turbulence (T. H. Dupree, et al.)

 \rightarrow defined the structure. Potential use for G.K. verification not yet exploited.

iv.) Hamiltonian Chaos

 \rightarrow early 60's – 80's

 \rightarrow with: Zaslavsky, Rosenbluth, Taylor (RSTZ paper, Trieste) ...

achieved:

→ formulation of Hamiltonian chaos theory for plasma-relevant problems, especially magnetic field lines (c.f. Rechester-Rosenbluth '78)

→ linked Kolmogorov, Arnold, Chirikov to MFE-plasma community

 \rightarrow initiated further work by Zaslavsky school

→ defined and established standard techniques in everyday use - re: RMP

v.) Neoclassical Theory

 \rightarrow 60's

 \rightarrow with: Galeev, Rosenbluth, ...

achieved:

basic structure and concepts of the theory

fundamental ideas on heat transport, flow damping,
 electric fields, ...

→ conceptual foundations of an industry initiated, followed by many others

vi.) Quasi-Particle Picture and Methodology

 \rightarrow 60's – late 70's

→ with: Zakharov, Rudakov, Galeev, Shapiro, Shevchenko, ...

achieved:

- development of modulational interaction paradigm

 \rightarrow Langmuir turbulence

 \rightarrow convective cells (includes zonal flows)

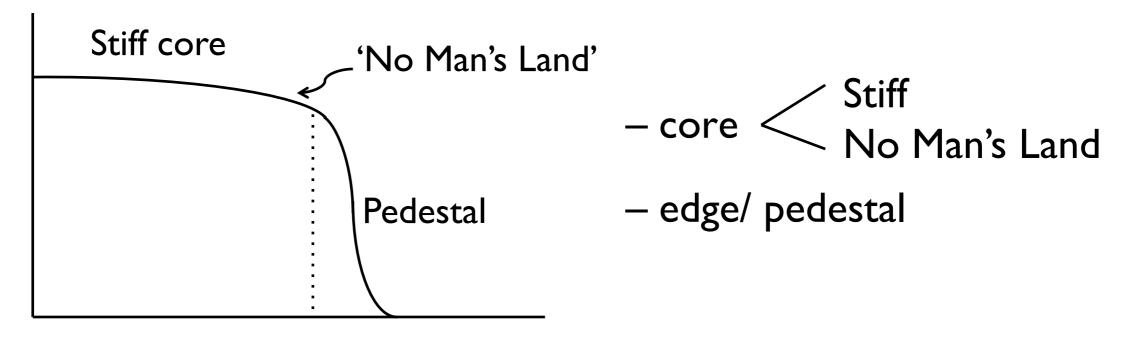
cf: Sagdeev, et al. '78

- concept of pattern selection in secondary structures

➔ mapped out a useful and elegant approach to structure formation in turbulence

A2.) Where Things Stand Today

 \rightarrow The Multi-Zone Picture



Core:

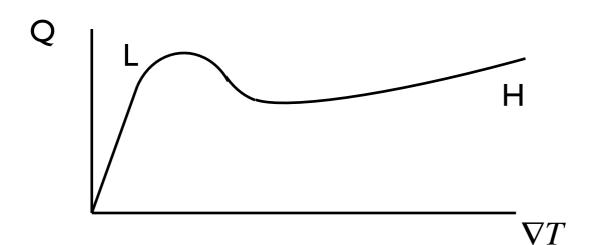
- The Good News Understanding
 - → Core Turbulence : ITG, TEM modes ("standard model")
 - $\rightarrow D \sim D_B \rho_*^{\alpha}, \ \alpha \leq 1 \Rightarrow$ close to GyroBohm
 - \rightarrow Zonal Modes critical to saturated state
 - $\rightarrow \nabla n$ peaking \rightarrow TEP, thermoelectric pinch
 - \rightarrow intrinsic rotation \rightarrow turbulent (residual) stress

- \rightarrow The Bad News Performance
- \rightarrow Stiffness \rightarrow Core profiles difficult to move off criticality
- \rightarrow No Man's Land: standard GK codes <u>under-predict</u> layer linking pedestal to stiff core
 - "standard model" fails
 - spreading, non-locality?
 - Significant impact on ITER predictions
- \rightarrow 'The Fix' of questionable reactor relevance : ITBs
 - ITB's require externally driven V_{Φ} shear \rightarrow how ?
 - MHD stability of ITB plasmas dubious

→ We understand a great deal about the core, but will probably need to live with its stiffness...

Edge

- \rightarrow Good News \rightarrow H-Mode
 - L→H transition, first observed in 1982, by F. Wagner on ASDEX, is THE high point of MFE since Trieste.
 - L→H transition enables confinement with plausible extrapolation to ignition, and is 'robust' state.
 - physics : H-mode is due spontaneous ETB formation, very likely due to enhanced ExB shear suppression induced transport bifurcation.



 \rightarrow Current Status :

- L \rightarrow H transition likely triggered by synergy between Reynolds stress driven (zonal) flows and ∇P -driven diamagnetic flow
 - → world wide 'hot topic', especially 2009 present
- Transition is Ist order → hysteresis

Major unknowns :

- $P_{Thresh}(r)$ scalings, especially low density regime
- strength of hysteresis \rightarrow important near P_{Th}
- width of H-mode pedestal
- pedestal transport physics \rightarrow especially electron thermal

- \rightarrow The Bad News \rightarrow H-Mode
 - H-mode is fundamentally state with strong suppression of particle transport
 - ∇n and ∇P steepen to (MHD) stability limits
 - → ELMs happen!
 - ELM : Edge Localized Modes
 - edge relaxation oscillation
 - kink-ballooning, etc.
 - unacceptable transient power load on PFC
 - Basic Problem: H-mode (Particle) Confinement is TOO GOOD.

- \rightarrow ITER Crisis Du Jour ELM Mitigation
 - Seek reduce/eliminate ELM by relieving ∇P using stochastic field induced by additional applied coil
 - RMP edge layer becomes fundamentally 3D

- a step toward stellarator !?

- Counter-intuitively, RMPs degrade particle confinement more than thermal
- RMP's have achieved some success in ELM suppression, but windows of operation limited.
 Understanding is poor.
- Alternatives : QH-mode, pellets, SMBI, ...
- New Problem : SOL widths too narrow

- \rightarrow Current Research Foci on Confinement Physics
 - 'Non-Locality' and Transport in No Man's Land
 → (microstability)
 - Flow Physics : Zonal and Intrinsic Rotation
 - \rightarrow (quasi particles)
 - L \rightarrow H Transition : Dynamics, Thresholds
 - \rightarrow (quasi particles, neoclassical)
 - Pedestal Modelling
 - RMP, 3D Physics
 - \rightarrow (Hamiltonian chaos)

- B.) A Recent Perspective : The Heat Flux 'Jamiton'
 - "On how the propagation of heat flux modulations triggers ExB flow pattern formation"
 - Y. Kosuga, P.H. Diamond, O.D. Gurcan (PRL '13, in press)

- "Transport of Radial Heat Flux and Second Sound in Fusion Plasmas"
 - O.D. Gurcan, P.H. Diamond, X. Garbet, et al. (PoP '13, in press)

- Motivation
- Extension of heat avalanche concept
- Relation to traffic flow problem
- Analysis
 - \rightarrow Instability calculation: suggestive of flux jam formation
 - \rightarrow maximal growth: comparison to staircase structure
- Implications for staircase and transport
- Summary

- ExB flows are important for tokamak confinement

 \rightarrow Shear suppression of turbulent transport

- ExB flows are self-organized in tokamak plasmas

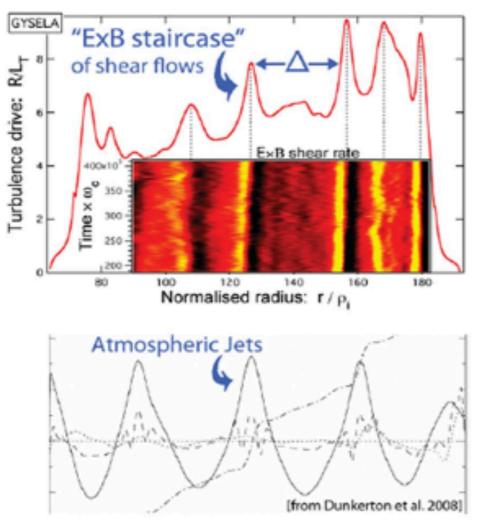
 \rightarrow hierarchy of flow patterns:

Type of ExB flows	generation mechanisms	
Mean ExB	transport bifurcation, strong mean gradients, mean shear flows	
radially quasi-periodic zonal flows	drift wave turbulence, non-local energy transfer in k-space	see Sagdeev, et. al.
ExB staircase	?????	·78

 $\frac{\text{What is the staircase}?}{\text{GK Simulation in 10 years}} \rightarrow \text{The Most Interesting Thing in}$

With G. Dif-Pradalier et. al.

Analogy with geophysics: the ' $\textbf{E} \times \textbf{B}$ staircase'



 Quasi-regular pattern of shear layer and profile corrugations

$$Q = -n\chi(r)\nabla T \implies Q = -\int \kappa(r, r')\nabla T(r') \,\mathrm{d}r'$$

- ' $\mathbf{E} \times \mathbf{B}$ staircase' width \equiv kernel width Δ
- coherent, persistent, jet-like pattern
 the 'E × B staircase'
- staircase NOT related to low order rationals!

Dif-Pradalier, P.D. et. al., Phys Rev E. 2010

What is the staircase??

- The point:
 - fit: $Q = -\int dr' \kappa(r, r') \nabla T(r') \qquad \kappa(r, r') \sim \frac{S^2}{(r r')^2 + \Delta^2} \rightarrow \text{some range in exponent}$

 $-\Delta >> \Delta_c$ i.e. $\Delta \sim Avalanche scale >> \Delta_c \sim correlation scale$

- Staircase 'steps' separated by $\Delta ! \rightarrow$ stochastic avalanches produce quasi-regular flow pattern!? \rightarrow How?
 - The notion of a staircase is not new especially in systems with natural periodicity (i.e. NL wave breaking...)
 - · What IS new is the connection to stochastic avalanches, independent of geometry
- What is process of self-organization linking avalanche scale to zonal pattern step?
 - i.e. How does system resolve pattern selection competition between zonal flow and streamer/ avalanche?

 \rightarrow spatial, domain decomposition, ala ' spinodal decomposition?

Towards a model

- How do we understand quasi-regular pattern of ExB staircase, generated from stochastic heat avalanche???

- \rightarrow 'eigenfunction' idea dubious, as no identifiable growth phase for staircase
- An idea: jam of heat avalanche

ExB staircase \leftrightarrow corrugated profile

- \rightarrow corrugation of profile occurs by 'jam' of heat avalanche flux
- * \rightarrow time delay between $Q[\delta T]$ and δT is crucial element

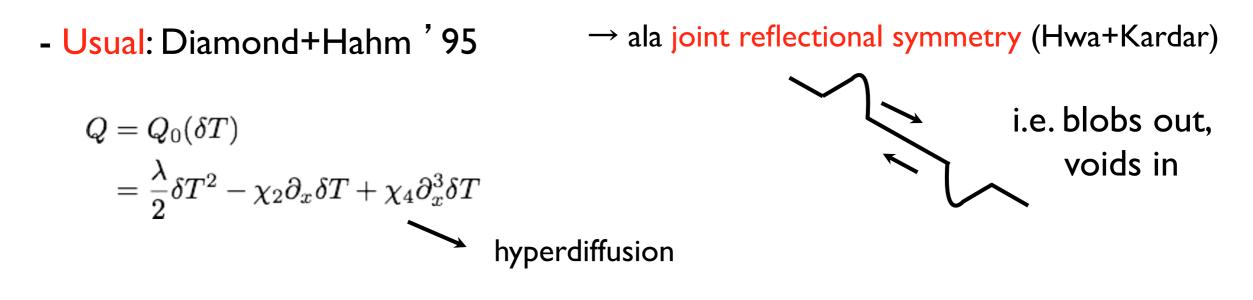
バン

 \rightarrow accumulation of heat increment

- \rightarrow stationary corrugated profile
- How do we actually model heat avalanche 'jam' $?? \rightarrow$ what is dynamical origin?
- $\delta T(x) \leftrightarrow v'_E$ via radial force balance \Rightarrow onset

Heat avalanche dynamics

- → Hwa+Kardar '92, P.D. + Hahm '95, Carreras, et al. '96, ... GK simulation, ... Dif-Pradalier '10
 - δT :deviation from marginal profile \rightarrow conserved order parameter
 - Heat Balance Eq.: $\partial_t \delta T + \partial_x Q[\delta T] = 0 \quad \rightarrow$ up to source and noise
- Heat Flux $Q[\delta T]$? utilize symmetry argument, ala' Ginzberg-Landau



lowest order \rightarrow Burger's equation $\partial_t \delta T + \lambda \delta T \partial_x \delta T = \chi_2 \partial_x^2 \delta T$

An extension of the heat avalanche dynamics model

- An extension: allow a finite time relaxation of Q toward SOC flux state

$$\partial_t Q = -\frac{1}{\tau} \left(Q - Q_0(\delta T) \right) \qquad \qquad Q_0[\delta T] = \frac{\lambda}{2} \delta T^2 - \chi_2 \partial_x \delta T + \chi_4 \partial_x^3 \delta T$$

Relaxation time: $\tau(\delta T, Q_0)$ lag between mean and instantaneous flux

- i.e. au enforces time delay between δT and heat flux, large near criticality
- Dynamics of heat avalanche:

- → Collective Dynamics of Turbulent Eddy 'Aether' I – First Quasi-Particle Model of Transport?!
- Kelvin, 1887
 - XLV. On the Propagation of Laminar Motion through a turbulently moving Inviscid Liquid. By Sir WILLIAM THOMSON, LL.D., F.R.S.*
 - 1. IN endeavouring to investigate turbulent motion of water between two fixed planes, for a promised communication to Section A of the British Association at its coming Meeting in Manchester, I have found something seemingly towards a solution (many times tried for within the last twenty years) of the problem to construct, by giving vortex motion to an incompressible inviscid fluid, a medium which shall transmit waves of laminar motion as the luminiferous æther transmits waves of light.

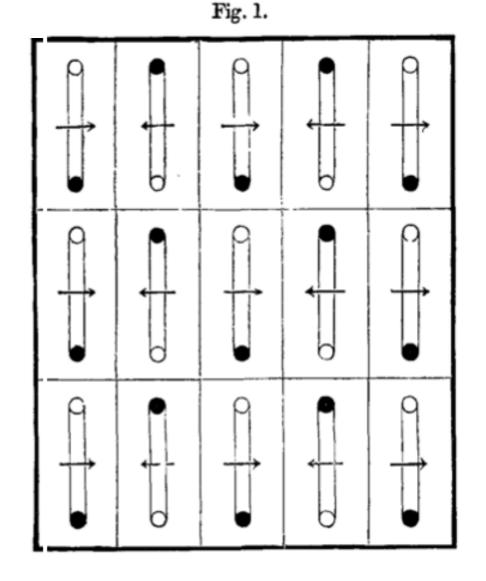
2. Let the fluid be unbounded on all sides, and let u, v, w be the velocity-components, and p the pressure at (x, y, z, t). We have

$$\frac{du}{dx} + \frac{dv}{dy} + \frac{dw}{dz} = 0 \quad . \quad . \quad . \quad . \quad (1),$$

* Communicated by the Author, having been read before Section A of the British Association at its recent Meeting in Manchester. 21. Eliminating the first member from this equation, by (34), we find $\frac{d^2f}{dt^2} = \frac{2}{9} R^2 \frac{d^2f}{dy^2} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (51).$

Thus we have the very remarkable result that laminar disturbance is propagated according to the well-known mode of waves of distortion in a homogeneous elastic solid; and that the velocity of propagation is $\frac{\sqrt{2}}{3}$ R, or about \cdot 47 of the average velocity of the turbulent motion of the fluid.

- → time delay between
 Reynolds stress and
 wave shear introduced
- → converts diffusion equation to wave equation
- → describes wave in ensemble of vortex quasi-particles
- c.f. "Worlds of Flow", O. Darrigol



Relaxation time - the idea

-What is ' τ '? \rightarrow Analogy from traffic jam dynamics

 \rightarrow c.f. Whitham!

- A useful analogy:

avalanche dynamics	traffic flow dynamics	
temp. deviation from marginal profile	local car density	
heat flux	traffic flow	
mean SOC flux (ala joint reflection symmetry)	equilibrium, steady traffic flow $V(ho)$	
heat flux relaxation time $~ au$	driver's reaction time $~~ au$	4

 \rightarrow driver's response can induce jam

 \rightarrow jam in avalanche \rightarrow profile corrugation \rightarrow staircase?!?

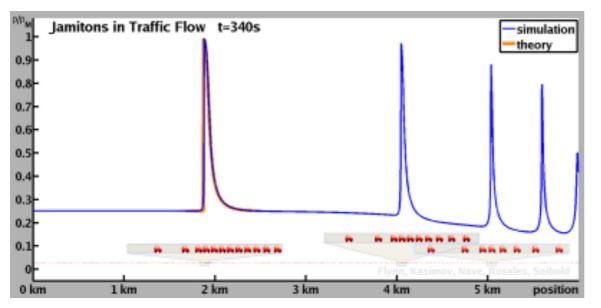
 \rightarrow key distinction: instantaneous flux vs. mean flux

Excitons inTraffic:The 'jamiton'

- A model for Traffic jam dynamics \rightarrow Whitham

$$\begin{split} \rho_t + (\rho v)_x &= 0 \\ v_t + v v_x &= -\frac{1}{\tau} \left\{ v - V(\rho) + \frac{\nu}{\rho} \rho_x \right\} \end{split}$$

- \rightarrow Instability occurs when $\tau > \nu/(\rho_0^2 {V_0'}^2)$
 - $D_{eff} = \nu \tau \rho_0^2 {V'_0}^2 < 0 \rightarrow \text{clustering instability}$
- \rightarrow Indicative of jam formation
- Simulation of traffic jam formation



- $\rho \longrightarrow \text{car density}$
- $v \longrightarrow \text{traffic flow velocity}$

 $V(\rho) - \frac{\nu}{\rho} \rho_x \rightarrow \text{an equilibrium traffic flow}$

 $au \rightarrow$ driver's response time

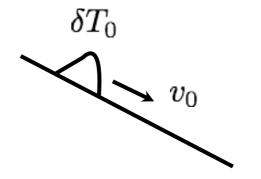
http://math.mit.edu/projects/traffic/

 \rightarrow Jamitons (Flynn, et.al., '08)

n.b. : I.V.P.
$$\rightarrow$$
 decay study

Analysis of heat avalanche dynamics: 1

- How do heat avalanches jam?
- Consider an initial avalanche, with amplitude δT_0 , propagating at the speed $v_0 = \lambda \delta T_0$



- negative heat conduction instability occurs if $v_0^2 \tau$ (related to streaming) beats $\chi_2 =>$ overshooting => clustering, as Q can depart $Q_0(\delta T)$

$$\partial_t \widetilde{\delta T} + v_0 \partial_x \widetilde{\delta T} = \chi_2 \partial_x^2 \widetilde{\delta T} - \chi_4 \partial_x^4 \widetilde{\delta T} - \tau \partial_t^2 \widetilde{\delta T}$$

 $\rightarrow (\chi_2 - v_0^2 \tau) \partial_x^2 \widetilde{\delta T} - \chi_4 \partial_x^4 \widetilde{\delta T}$; in moving frame of avalanche

n.b. akin to negative viscosity instability

- \rightarrow Recall ZF as secondary mode in the gas of primary DW
- \rightarrow Heat flux 'jamiton' as secondary mode in the gas of primary avalanches
- \rightarrow More generally, both are examples of 'second sound', as in phonon gas

Analysis of heat avalanche dynamics: 2

- Growth rate of the pulse: \rightarrow negative heat conduction instability

$$\gamma = -\frac{1}{2\tau} + \frac{1}{2\tau} \sqrt{\frac{r+1}{2} - 2\tau \chi_2 k^2 \left(1 + \frac{\chi_4 k^2}{\chi_2}\right)} \qquad \qquad r = \sqrt{\left\{4\tau \chi_2 k^2 \left(1 + \frac{\chi_4 k^2}{\chi_2}\right) - 1\right\}^2 + 16v_0^2 k^2 \tau^2 k^2 \left(1 + \frac{\chi_4 k^2}{\chi_2}\right)}$$

- Threshold for instability:
$$au > rac{\chi_2}{v_0^2} \left(1 + rac{\chi_4 k^2}{\chi_2}
ight)$$

but $1/\tau = 1/\tau[\mathcal{E}]$

clustering instability strongest near criticality

- Scale for maximum growth (assuming $k^2 < \frac{\chi_2}{\chi_4}$, scale not so small that χ_4 dominates)

$$k^{2} \cong \frac{\chi_{2}}{\chi_{4}} \sqrt{\frac{\chi_{4}v_{0}^{2}}{4\chi_{2}^{3}}} \text{ from } \frac{\partial\gamma}{\partial k^{2}} = 0 \quad \Rightarrow \quad 8\tau \frac{\chi_{4}^{2}}{\chi_{2}} k^{6} + 4\tau \chi_{4} k^{4} + 2\frac{\chi_{4}}{\chi_{2}} k^{2} + 1 - \frac{v_{0}^{2}\tau}{\chi_{2}} = 0$$

 \rightarrow staircase size $\Delta^2_{stair}(\delta T)$, δT from saturation \leftrightarrow consider shearing!

Analysis of heat avalanche dynamics: 3

- Saturation: shearing strength to kill clustering instability avalanche growth \rightarrow profile corrugation \rightarrow ExB staircase $\rightarrow v'_{E \times B}$ $v'_{E \times B} \sim \gamma_{max}$

 \rightarrow guesstimate, only \rightarrow onset, only, of step formation

- Saturated amplitude: $\frac{\delta T}{T_i} \sim \frac{1}{v_{thi}\rho_i} \sqrt{\frac{\chi_4}{\tau}}$

from $\gamma_{max} \cong \frac{1}{2\tau} \sqrt{\frac{v_0^2 \tau}{\chi_2}} \sim \frac{\lambda T_i}{2\sqrt{\chi_2 \tau}} \frac{\delta T}{T_i}$ and $v'_{E \times B} \cong \frac{c}{eB} \delta T'' \sim \omega_{ci} \rho_i^2 k_{max}^2 \frac{\delta T}{T_i} \sim \omega_{ci} \frac{\rho_i^2 \lambda T_i}{2\sqrt{\chi_2 \chi_4}} \left(\frac{\delta T}{T_i}\right)^2$ \rightarrow Radial Force Balance

- Staircase width: $\Delta_{stair}^2 \sim k_{max}^{-2}(\delta T) \sim \frac{2v_{thi}}{\lambda T_i} \rho_i \sqrt{\chi_2 \tau} \qquad \chi_2 \sim \chi_{neo}$

 \rightarrow Geometric mean of ρ_i and $\sqrt{\chi_2 \tau}$

 \rightarrow neoclassical diffusion length in 1 relaxation time

$$ightarrow$$
 'standard' numbers: $\Delta_{stair} \sim 10 \Delta_c$

Toward Systematics (1):

- to evolve $\boldsymbol{\tau}$ self-consistently, need $\partial_t \mathcal{E}$ eqn. for $1/\tau[\mathcal{E}]$

 \rightarrow Turbulence intensity evolution

- Feedback system for δT and \mathcal{E} , with Q as control parameter
- Key idea: au long, near marginal
- $Q = -\chi \nabla T$ replaced by

$$\tau \partial_t Q + Q + \chi_T \nabla T + \frac{\text{heat flux}}{\text{scattering}} = S_0$$

akin intensity equation for $Q \longrightarrow c.f.$ turbulence spreading

Toward Systematics (2):

- can 'derive' $\partial_t Q$ eqn.

(extended Guyer-Krumhansl relation, relevant to transport in phonon gas)

from moments of: $\partial_t \langle \delta f^2 \rangle \longrightarrow 2pt$ correlation evolution

 \rightarrow c.f. O.D.G, P.D., Garbet, et. al.

- re-enforces point that 2pt correlation evolution is FUNDAMENTAL.
 Those Space fluxes are production there.
- for experiment: need separate Q from $\nabla \langle T \rangle$, with high resolution! i.e. severe challenge

A Glimpse at Some Results

- 2pt correlation evolution

$$\left(rac{\partial}{\partial t} + \mathcal{L}_1 + \mathcal{L}_2
ight) \langle ilde{f}_1 ilde{f}_2
angle + \mathcal{P}_1 ar{f}_1 + \mathcal{P}_2 ar{f}_2 =
abla_1 \cdot \Gamma_{Q_1} +
abla_2 \cdot \Gamma_{Q_2} + \partial_{v_{\parallel 1}} \mathcal{K}_1 + \partial_{v_{\parallel 2}} \mathcal{K}_2$$

$$\begin{split} \mathcal{L}_{1,2} &= v_{\parallel 1,2} \nabla_{\parallel 1,2} + \frac{q}{m} \bar{E}_{\parallel 1,2} \frac{\partial}{\partial v_{\parallel 1,2}} \qquad \mathcal{P}_{1,2} = \langle \tilde{f}_{1,2} \tilde{\mathbf{v}}_{E1,2} \rangle \cdot \nabla_{1,2} + \frac{q}{m} \langle \tilde{f}_{1,2} \tilde{E}_{\parallel 1,2} \rangle \frac{\partial}{\partial v_{\parallel 1,2}} \\ \Gamma_{Q_{1,2}} &= \langle \tilde{\mathbf{v}}_{E1,2} \tilde{f}_{1} \tilde{f}_{2} \rangle \qquad \mathcal{K}_{1,2} = \langle \tilde{E}_{\parallel 1,2} \tilde{f}_{1} \tilde{f}_{2} \rangle \end{split}$$

- Energy moment \rightarrow Guyer-Krumhansl Structure

$$\begin{array}{c} & & & \\ \partial_t Q - \partial_x (D_x(\mathcal{E})\partial_x Q) = -D_y(\mathcal{E})k_y^2(Q - \chi(\mathcal{E})\partial_x \langle T \rangle) \\ & & \downarrow & \downarrow & \swarrow \\ & & & \\ \text{spreading turbulent poloidal decorrelation} & \begin{array}{c} \text{mean turbulent heat flux} \end{array} \\ \begin{array}{c} & \text{mean turbulent heat flux} \end{array} \\ \end{array}$$

Summary

- A model for ExB staircase formation

Heat avalanche \rightarrow Profile corrugation \rightarrow ExB staircase Profile corrugation due to 'jam' of heat flux avalanche!

Key:

- Analysis of heat flux jam dynamics
 - \rightarrow clustering instability when plasma response time is long

$$\gamma = -\frac{1}{2\tau} + \frac{1}{2\tau} \sqrt{\frac{r+1}{2} - 2\tau \chi_2 k^2 \left(1 + \frac{\chi_4 k^2}{\chi_2}\right)} \qquad \tau > \frac{\chi_2}{v_0^2} \left(1 + \frac{\chi_4 k^2}{\chi_2}\right)$$

 \rightarrow length scale of most jamming unstable modes \rightarrow step size

$$\Delta_{stair}^2 \sim k_{max}^{-2}(\delta T) \sim \frac{2v_{thi}}{\lambda T_i} \rho_i \sqrt{\chi_2 \tau}$$

<u>Summary</u>

More importantly, new perspective on:

- SOC and relaxation
- Shear flow formation
- Formulation of heat transport and spreading

C.) Looking Ahead

 \rightarrow MFE confinement theory evolves and continues

to be a dynamic research field

 \rightarrow a recent success study : intrinsic rotation

- discovered in '95 (Ida), '97 (Rice)

- extensively investigated by theory and simulation 2005 –
- now entering maturity ...

→ simulation, especially GK, increasingly central but need diversify simulation models, approaches

\rightarrow ITER issue

need a change in concept:

 \rightarrow '60 – now: design for optimal confinement

- \rightarrow now ITER, DEMO: design for optimal power handling
- corollary: Is the H-mode the way to go?

n.b. : really seek optimal energy, not particle, confinement

- a possibility: I-mode (c.f. AUG, Alcator C-Mod, ...)
 - H-mode energy confinement with L-mode particle confinement
 - sub-critical to transitions but strong zonal mode activity
 - much to learn ...

R. Z. Sagdeev's impact on MFE physics, initiated in early 60's, is strong and visible in 2013