

Reflections on the SBIR program JOHN R. CARY CEO@TECH-X, PROF@CU

SIMULATIONS EMPOWERING YOUR INNOVATIONS

SBIR/STTR program: substantial support to small business for innovative research

- Mandated by Congress
- \$21 billion in research, 400k scientists and engineers 1982-2009
- Fraction of research funding (not construction, NNSA exception)
 - SBIR: 2.6% in 2012 to 3.2% in 2017
 - STTR: .35% for 2012 and 2013 to 0.45% in 2016
- Staged approach
 - Phase I: \$150k for 9 months
 - Phase II: \$1M for 2 years
- OR Fast track: All in one go

ТЕСН-х Today's talk

• Who am I, What is Tech-X?

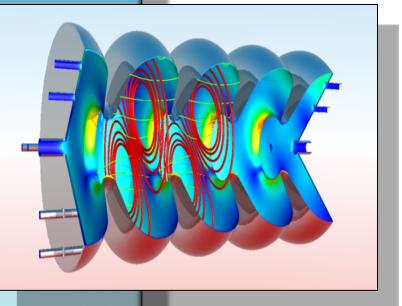
- Finding the solicitations
- What is sought?
- Meeting agency needs and commercialization needs
- Marketing plans
- Setting up infrastructure
- Reality: funding success rate

• Where is Tech-X now, and where is it going?

SIMULATIONS EMPOWERING YOUR INNOVATIONS

- Professor at CU since 1984, but only 20% time
- Expertise: plasma physics, accelerator physics, nonlinear dynamics, computational physics, EM modeling, fusion
- Papers on Google Scholar
- Cofounder and CEO at Tech-X Corporation

What is Tech-X Corporation (www.txcorp.com)?


- Founded in 1994
- ~65 people, 2/3 PHDs, Boulder, Buffalo, Daresbury
- Leader on multiple SciDAC (Scientific Discovery through Advanced Computation) projects
- Multiple computational physics products
- Providing services for
 - High-performance computational software for Engineering Simulation and Design
 - Enhancing code performance through porting to modern hardware (GPUs, MIC)
 - High-performance visualization and graphical user interfaces
 - Parallel data analysis of simulation and sensor data
 - Middleware for systems integration and real time data distribution
- 220 SBIRs from DOE, NASA and DOD, 74 Phases II

VSim Product: Electromagnetic and TECH-X Kinetic Plasma Modeling

- VSim for Electromagnetic solutions
 - Antennas
 - Accelerator cavities
 - Photonic devices

VSim for Microwave Devices

- S-parameters
- Multipacting impacts on performance
- VSim for Plasma Discharges
 - Plasma processing
 - Plasma medical devices
- VSim for Plasma Accelerator
 - Laser-plasma wakefield acceleration
 - Beam-plasma acceleration

TECH-X SBIR/STTR has strong national buy-in

Motivations

- Most jobs created by small business
- Agencies need to be prodded to include small businesses
- Goals
 - Stimulate technological innovation
 - Meet Federal research and development needs.
 - Foster and encourage participation in innovation and entrepreneurship by socially and economically disadvantaged persons.
 - Increase private-sector commercialization of innovations derived from Federal research and development funding.

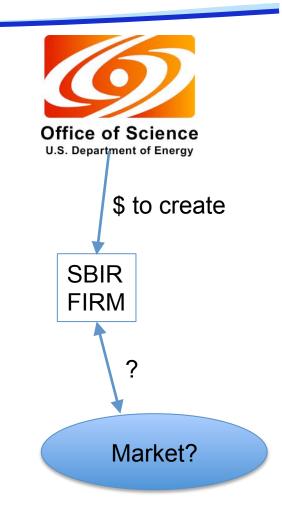
TECH-X Find and read the solicitations

- 11 agencies participate, including DOD, NIH, DOE, NASA, NSF (highly restrictive), Commerce (NOAA, NIST)
- <u>http://www.sbir.gov/news/sbir-and-sttr-2013-solicitation-release-dates</u>
- Currently, DOE has two SBIR releases
 - Release 1 (due Nov): Offices of Science and NNSA
 - Release 2 (due Feb): Offices of Electricity Delivery and Energy Reliability, Energy Efficiency and Renewable Energy, Environmental Management, Fossil Energy, Nuclear Energy

SIMULATIONS EMPOWERING YOUR INNOVATIONS

Increasing emphasis on commercialization implies agency, dual, or pure comm use

- Prior to reauthorization: producing something that the agency (e.g., for its lab infrastructure) wanted was enough
- Since reauthorization, one must show strong potential for commercialization, e.g.,
 - Agency purchase
 - Agency follow-on funding
 - Private sector funding or purchase
- Agency use
 - DOD (purchase), NASA (follow on funding)
- Dual use
 - DOE (no follow on), NASA


Pure commercialization (no agency mission) NSF, NIH?

Agency-Use project results in something the agency or its surrogates will buy

DOD
 Works through primes (Lockheed,
Raytheon, Boeing)
 Invent something that a prime wants
 DOD uses SBIR to fund you through design
 Sell result to a prime
 Example: First RF antennas (http://
www.firstrf.com/FIRST%20RF%20SBIR
%20Summmaries%2005302011.html)
NASA
 Has labs, wants research done
 Develop something to get that research
done
 Sometimes NASA will provide follow-on
funding to do more research with the tools
you have developed

TECH-X Dual-use project results in something the agency and private sector want

- Agency either does not purchase or purchases only small amounts
- Agency has no plans for follow-on funding
- DOE
- Example
 - ORNL needs to computed performance of its front-end EC sources
 - Similar methods could predict plasmas in processing machines
- Anti-example
 - RHIC needs improved spin-tracking software
 - RHIC won't buy the product, provide funds to maintain it, and neither will anyone else
 - Improve by creating a product which use gives RHIC what they want

With increasing commercialization emphasis, marketing plan is critical

- What is changing that requires your product?
 - New need?
 - New opportunity?
- How big a market is there for your product?
- How big is the industry that might buy our product?
- How will you launch your product?
- How will you protect your product's position?

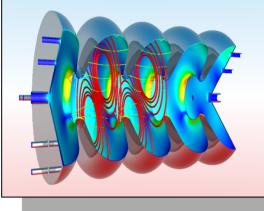
Market research is as hard a physics research, with outcomes that are much less certain

- Incorporation
- Registration with federal systems
- Accounting system(s)
 - Federal taxes
 - Federal grants accounting
 - Local property taxes
 - Each of these has its own set of rules
- Payroll and associated taxes
- Conflict of interest management

As long as you don't make money, taxman does not care, but federal grants auditors do!

TECH-X Look at your odds before starting

2009 SBIR success rates	%
DOE	18.7
NASA	18.4
DoD	14.9
DHS	9.6
NSF	15.4
NIH	24.2


But 2012 NIH SBIR success rates for Phase I is 15.6%

Ultimate goal: Transition technology to the marketplace

- If you do only SBIRs, your company will have no value (for sale, e.g.)
- Emulate companies that use SBIR to develop highrisk ideas, but then transition a number of those to the marketplace
 - First RF
 - Creare
- Tech-X shifting to a similar strategy
 - SBIRs de-emphasized relative to commercialization
 - Not pursuing SBIRs that have no/little possibility of producing a product even if there is a specific DoE need
 - Each SBIR has to have a real product as its goal

Which brings us back to the Tech-X product lines

- VSim for Electromagnetic solutions
 - Antennas
 - Accelerator cavities
 - Photonic devices
- VSim for Microwave Devices
 - S-parameters
 - Multipacting impacts on performance
- VSim for Plasma Discharges
 - Plasma processing
 - Plasma medical devices
- VSim for Plasma Accelerator
 - Laser-plasma wakefield acceleration
 - Beam-plasma acceleration

- USim Hypersonics
 - Navier-Stokes with anisotropy
 - Reaction chemistry
 - Multiple species
 - Real gas equation of state
 - General equation of state
- USim High Energy Dense Plasmas
 - Gas dynamic MHD
 - Separate evolution of electrons and ions
 - General equation of state
 - Full Maxwell's equations
- GPULib: High-performance IDL addon
- PtSolve: high-performance math libraries
- PyDDS: Python bindings for the data distribution service

