Particle ID at Jefferson Lab

Pawel Nadel-Turonski

Jefferson Lab

CPAD, Boulder, CO, April 17-19, 2013

Outline

1. The 12 GeV Upgrade at Jefferson Lab

• Short Overview

2. JLab experimental Halls and detectors

- Halls A-D
- Beyond 12 GeV

3. Generic detector R&D for an Electron-Ion Collider

• DIRC-based PID for the EIC central detector

Questions in medium-energy nuclear physics

- What is the role of gluonic excitations in hadrons?
 spectroscopy of light mesons
- Where is the missing spin in the nucleon?
 What is the role of orbital angular momentum?
- Can we reveal a novel landscape of nucleon substructure through measurements of new multidimensional distribution functions?
- What is the relation of short-range nuclear structure and parton dynamics?
- Physics beyond the standard model?
 precision measurements

Jefferson Lab 12 GeV upgrade

Civil construction essentially complete

HL-2 Refrigeration system installed and commissioned

Central Helium Liquefier building addition

New Hall D counting house

12 GeV Upgrade Physics Instrumentation

<u>GLUEx (Hall D):</u> exploring origin of confinement by studying hybrid mesons

<u>CLAS12 (Hall B):</u> understanding nucleon structure via generalized parton distributions

SHMS (Hall C): precision determination of valence quark properties in nucleons and nuclei

<u>*Hall A:*</u> nucleon form factors, & future new experiments like Moller & SOLID

Experiments and instrumentation

1. Instrumentation at JLab is constantly evolving

- Typical JLab experimental runs are short (typically less than a year)
- New experiments usually add hardware to the base equipment
 - Can be targets or detectors

2. Installation experiments

- Halls sometimes run experiments that do not use the base equipment
 - Examples include G0 and Qweak in Hall C
- At 12 GeV there will for instance be several such dark matter searches
 - HPS in Hall B, Dark Light at the Free Electron Laser, etc

3. The next few slides will show an overview of the main detectors

Hall C: focusing spectrometers

- Retain the High-Momentum Spectrometer (HMS)
- Replace SOS spectrometer with new Super-HMS
- Luminosities reaching at least 10³⁸ cm⁻²s⁻¹
- PID and momentum analysis up to 11 GeV/c

Hall C: SHMS detectors

Dipole Magnet Prototype Coil (SigmaPhi, France)

Wire Chambers (Hampton U)

PreShower (Yerevan/NSL)

All detectors but one from user contributions

Hall B: CEBAF Large Acceptance Spectrometer (CLAS)

• CLAS replaced by CLAS12

- Optimized for forward detection
- New magnets and detectors
- Old components reused when possible

RICH detector for π/K identification

TOF detectors with 80 ps resolution

• Two sets of threshold gas Cherenkovs and sampling EM calorimeter with preshower for

PID includes:

 e/π identification

Hall B: Stringing new drift chambers for CLAS12

Hall B: CLAS12 detector components

Silicon Vertex Tracker (JLab/FNAL/UNH)

The Forward Tagger for CLAS12

GOAL:

 New system to detect electrons at small angle and perform quasi-real photo-production expts
 CURRENT DESIGN

- FT-Cal: PbWO4 calorimeter (electron E/p)
- FT-Hodo: Scintillator tiles (veto for photons)
- **FT-Trck:** MicroMegas detectors (electron angles and polarization plane)

FT-Cal prototypes

- Test Proto9 (3x3 matrix) at JLab (Dec.'11-Feb.'12)
- First test Proto16 (4x4 matrix) at LNF(May '12)
- Final test Proto16 at LNF (Oct 2012)

TIME SCHEDULE

2010: detector design, end of R&D
2011: test of components, end of R&D
2012/2013: prototyping, procurement
2013: procurement and detector construction

2014/2015: detector test and installation in CLAS12

FT project JLab review December 11-12, 2012

The RICH detector for CLAS12

GOAL:

- identification of K in the 2-8 GeV/c momentum region
- #K separation with rejection factor ~1000

CURRENT DESIGN

- replace the LTCC
- aerogel radiator to match the momentum range
- multi-anode PMT for photon detection
- mirrors to focalize the photons in a smaller area

STATUS OF THE PROJECT

- Done • in-beam test at CERN of a simplified detector
 - test of MAPMT as single photon detectors
 - pion ring reconstruction
- Monte Carlo simulations

Done

Done +

- simulations calibrated with CERN data
- first realistic estimate of resolution and efficiency Done
- in-beam test at LNF-BTF (July 2012)
 - test of DAQ system
- in-beam test at CERN of a new prototype
 - direct and reflected light setup
 - **# separation**
 - Multiple crossing through aerogel

2012: detector geometry definition&prototyping 2013/2014: end of R&D, procurement

Hall D: GlueX with tagged, polarized real photons

New Hall, new detector (only solenoid reused)

Hall D: GlueX detector components

Barrel Calorimeter (BCAL) module (U Regina)

Hall D interior, Oct 2012

Forward DC (FDC) (JLab)

Forward Calorimeter (FCAL) (Indiana U)

Hall D: GlueX PID upgrade – option 1

- Baseline GlueX setup has limited kaon identification
- Upgrade option 1: Dual-radiator RICH similar to LHCb
 - limited to forward region
 - well-developed technology

Hall D: GlueX PID upgrade – option 2

- **DIRC** in GlueX detector ullet
 - Use half of SLAC DIRC bars to form a wall
 - Focusing readout: compact size, better ۲ resolution
 - Photon sensors: MCP-PMT or MaPMT •
 - Can be combined with a threshold • Cherenkov to cover higher momenta

Focusing Readout

Flat Mirror

Photo

Sensor

Hall A: Beyond the 12 GeV upgrade

Hall A will run early, with only modest initial upgrades. Later, several major installations are planned:

- Super BigBite Spectrometer
 (Approved for FY13-16 construction)
 - high Q² form factors
 - SIDIS
- MOLLER experiment (MIE – FY14-18?)
 Standard Model Test
- SoLID
 Chinese collaboration
 CLEO Solenoid

Hall A: HRS and (Super) Bigbite Spectrometers

- Retain High-Resolution Spectrometers (HRS)
- Upgrade Bigbite to SuperBigbite (SBS)
- SBS approved by DOE/NP in April 2012
- PID options include refurbished dual-radiator RICH from HERMES

Hall A: Solenoidal Large Intensity Device (SoLID)

- Large acceptance detector based on CLEO solenoid
- GEM-based tracking will allow reaching very high luminosities
- Envisioned to run in two configurations
- PID includes two threshold Cherenkovs, a Shashlyk-type EM calorimeter, and high-resolution time-of-flight detectors

Generic detector R&D for an Electron-Ion Collider

- The generic detector R&D program is site-independent
 - Addresses common R&D challenges in developing an EIC detector.
 - Coordinated by Tom Ludlam (BNL)
 - Significant HEP representation on the advisory committee

Quark Orbital Angular Momentum (OAM) with flavor

²³

EIC electron identification at low x Collider Kinematics $5.0 \otimes 100 (GeV/c)^2$

EIC: Iron-free detector layout with DIRC

r (meters)

Iron-Free Detector

- One possible detector layout incorporating a DIRC with readout inside of the detector volume.
- An iron-free solenoid for the EIC would be about half the size (1/8 the volume) of the 4th detector concept for the ILC.

25

DIRC π/K separation as a function of Θ_c resolution

- Better Cherenkov angle resolution allows pushing the $p_{_{\rm T}}$ coverage

Improving DIRC Θ_c resolution

Correlated term: tracking detectors, multiple scattering, etc

$$\sigma_{\theta_c}^{photon} = \sqrt{\sigma_{bar-size}^2 + \sigma_{pixel-size}^2 + \sigma_{chromatic}^2 + \sigma_{bar-imperfection}^2}$$

Summary

1. The JLab 12 GeV upgrade is well underway

- Halls A and D will come online first, B and C a little later.
- Experiments should be running by 2015
- Fixed-target program will run for at least 10-15 years.

2. Opportunities for early use of HEP detectors in real experiments?

- Replacing existing detector components
- Building ancillary detectors systems
- Collaborating on new experiments

3. Detector R&D for an Electron-Ion Collider

• HEP experience could provide important input

Backup

RICH Detector

December 2012: Extensive prototype tests at CERN hadron beam facility w/ pion and kaon beams.

Cherenkov Ring Profile

Hall B: Removal of old torus magnet

Re-using CLAS detectors for Hall C experiment

Recycled CLAS (Hall B) TOF detectors not used for CLAS12

d(e, e N_{backward})

Detect spectator proton or neutron to tag inmedium structure function on off-shell nucleon (EMC effect).

DIRC principle

 Charged particle traversing radiator with refractive index n with ✓ V/c > 1/n emits Cherenkov photons on cone with half opening angle cos - = 1/ √n().

- For n>⊠ some photons are always totally internally reflected for ✓ 1 tracks.
- Radiator and light guide: bar made from Synthetic Fused Silica
- Magnitude of Cherenkov angle conserved during internal reflections (provided optical surfaces are square, parallel, highly polished)
- Photons exit radiator into expansion region, detected on photon detector array. (pinhole imaging/camera obscura or focusing optics)
- DIRC is intrinsically a 3-D device, measuring: x, y, and time of Cherenkov photons, defining ____t_{propagation} of each photon.

EIC: Layout on the JLab site

• The MEIC has the same circumference as the CEBAF accelerator