

Report from the Energy Frontier Hadron Collider Detector R&D

Outline

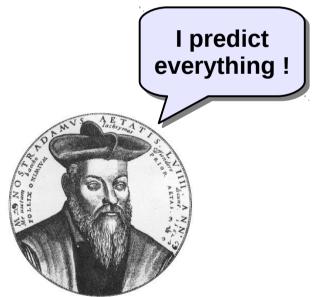
1) State of Knowledge at the Energy Frontier

- Higgs, SUSY, Exotica, etc....

2) Physics Goals for the next two decades

Plans and Projections for ATLAS and CMS

3) Hadron Collider Evolution


– LHC Upgrades

4) Detector Challenges to meet those Goals

ATLAS and CMS upgrade strategies

5) Ongoing R&D Summary

- Emphasis on US involvement
- Many efforts here no time for details

the Nostradamus seal of approval

Acknowledgments & Information

Special Thanks To

- Daniela Bortoletto, Abe Seiden

More Information

- ATLAS
 - > physics documents
 - > Phase-1 LOI
 - > Phase-2 LOI
- CMS
 - > physics documents
 - > Phase-1 HCAL TDR
 - > Phase-1 Pixels TDR

- General

> HEPAP Facilities Report http://science.energy.gov/hep/hepap/reports/

homepage

> European Strategy

https://twiki.cern.ch/twiki/bin/view/AtlasPublic CERN-LHCC-2011-012 CERN-LHCC-2012-022

http://cms.web.cern.ch/news/cms-physics-results CERN-LHCC-2012-015 CERN-LHCC-2012-016

The Higgs (or something like it)

----- Combined (stat+sys)

----- Combined (stat only) --- H $\rightarrow \gamma\gamma$

 $H \rightarrow ZZ^{(*)} \rightarrow 4l$

-0.6

126

127

Combined

 $H \rightarrow \gamma \gamma$

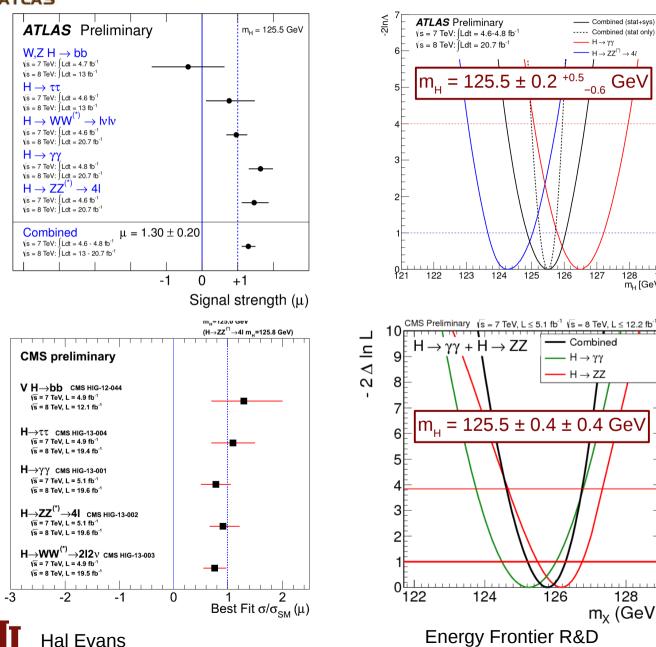
 $H \rightarrow 77$

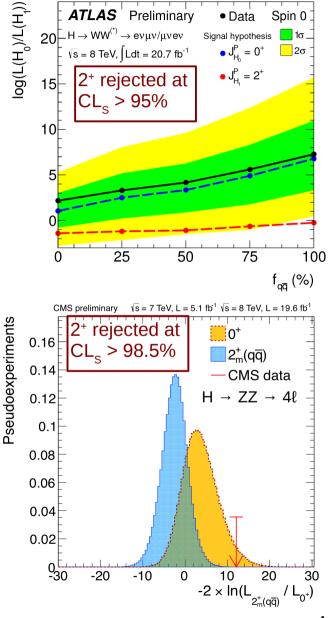
128

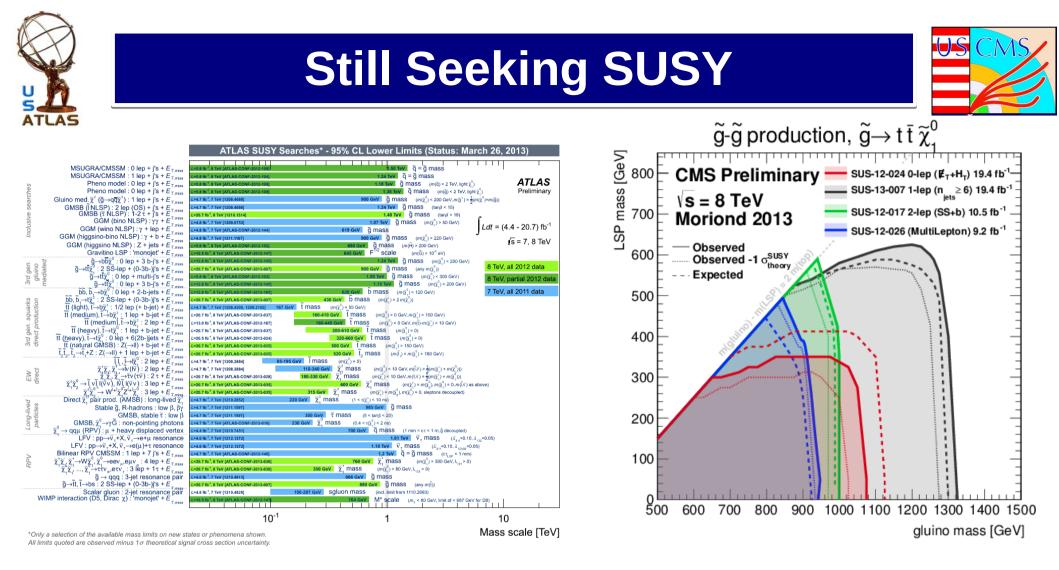
128

m_x (GeV)

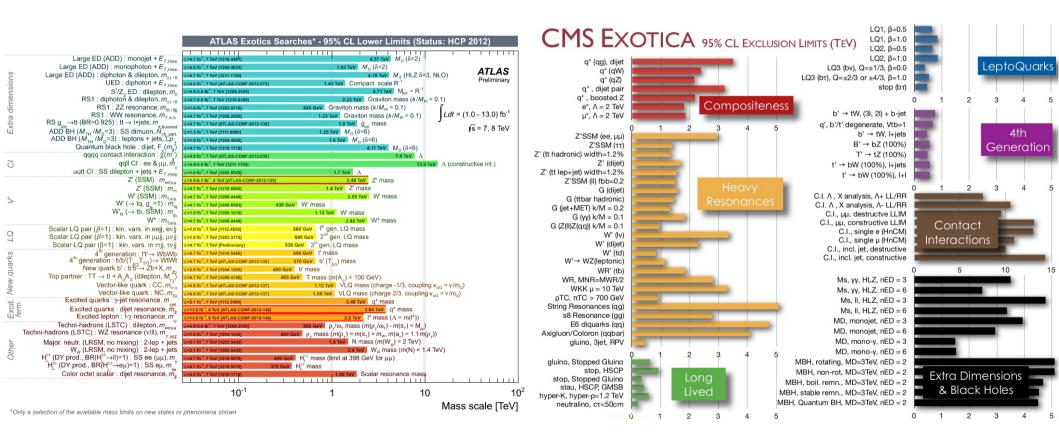
m_H [GeV]


Ge∖


20

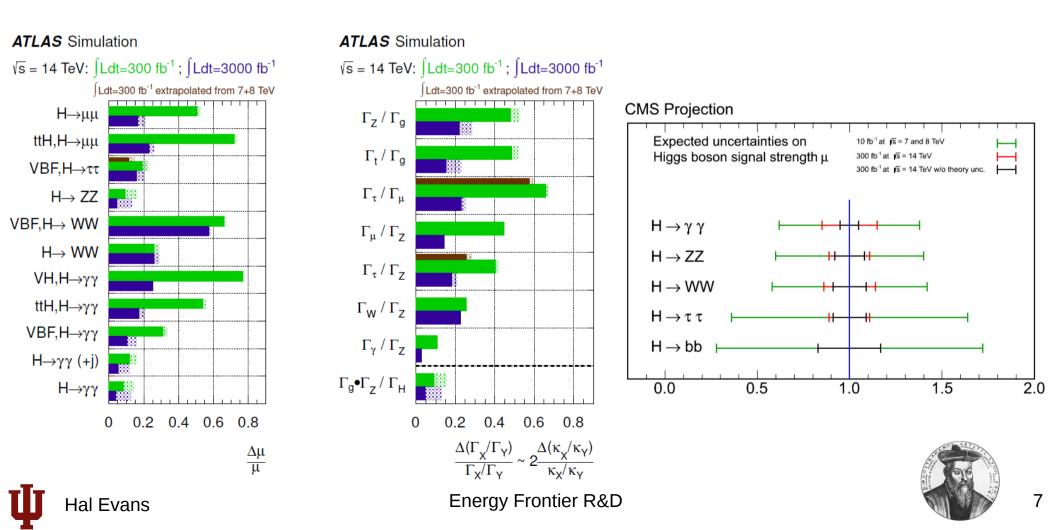

10

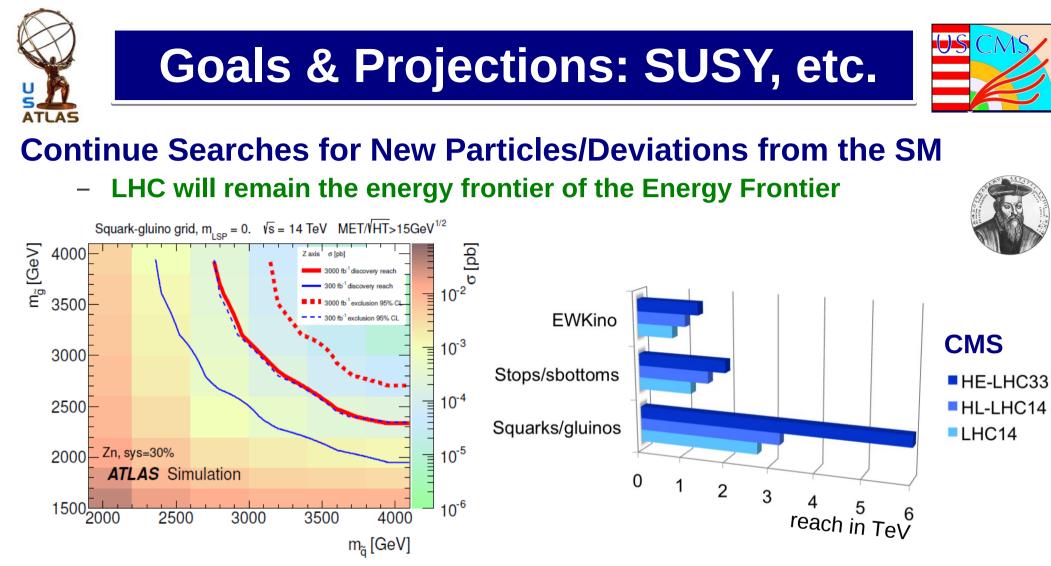
129


Strongly Produced \tilde{q}, \tilde{g} > 1 TeVWeakly Produced $\tilde{\chi}_i^{0}, \tilde{\chi}_i^{\pm}$ > 200 - 300+ TeV

Other Searches

No Hints Yet !




Goals & Projections: Higgs

Measure the Properties of the newly-discovered Boson

- couplings, partial width ratios, spin
- Higgs self-coupling under study: 3σ/exp possible

ATLAS: Weak Boson Scattering

Res. Mass	Coupling	300 fb ⁻¹	3000 fb ⁻¹
500	g = 1.0	2.4σ	7.5σ
1 TeV	g = 1.75	1.7σ	5.5σ
1 TeV	g = 2.5	3.0σ	9.4σ

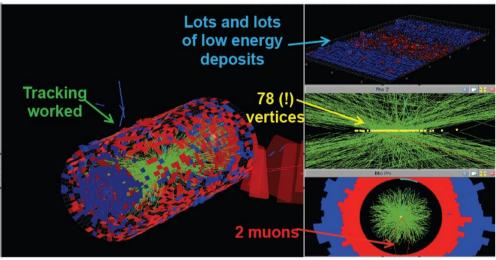
CMS: Lepto-Quarks (११jj)

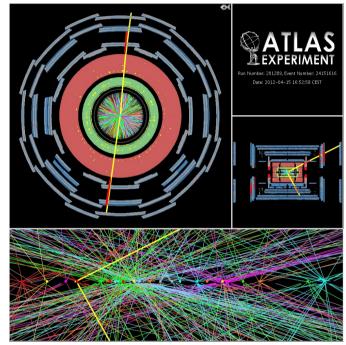
M Reach	LHC	3000 fb ⁻¹	33 TeV
Low S/B	1.6 TeV	1.8 TeV	2.5 TeV
High S/B	1.7 TeV	2.3 TeV	3.5 TeV

LHC Roadmap (tentative)

Accelerator Evolution

Parameter	Tevatron Run 2	LHC 2012	Phase-0	Phase-1	Phase-2	HE-LHC
√s	1.96 TeV	8 TeV	13–14 TeV	14 TeV	14 TeV	33 TeV
٤ _n	7–11 µm	2.2 µm	1.4 µm	2.5 µm	2.5 µm	2.59 µm
β*	0.28 m	0.6 m	0.4 m	0.3 m	0.15 m	0.6 m
crossing angle	0	290 µrad	300 µrad	~450 µrad	590 µrad	188 µrad
bunch length	30 cm	9 cm	7.55 cm	7.55 cm	7.55 cm	6.5 cm
N _p / bunch	2.9×10 ¹¹ / 8×10 ¹⁰	1.6×10 ¹¹	1.15×10 ¹¹	2.0×10 ¹¹	2.0×10 ¹¹	1.3×10 ¹¹
spacing	396 ns	50 ns	25 ns	25 ns	25 ns	50 ns
luminosity	4.3×10 ³² cm ⁻² s ⁻¹	0.76×10 ³⁴	2.0×10 ³⁴	2-3×10 ³⁴	5–7×10 ³⁴ (levelled)	2×10 ³⁴
pileup	2	35	48	>80	140	76
int. lumi.	12 fb ⁻¹	22 fb ⁻¹	75 fb ⁻¹	350 fb ⁻¹	3000 fb ⁻¹	300 fb ⁻¹


Challenges for the Detectors


1. Instantaneous Luminosity

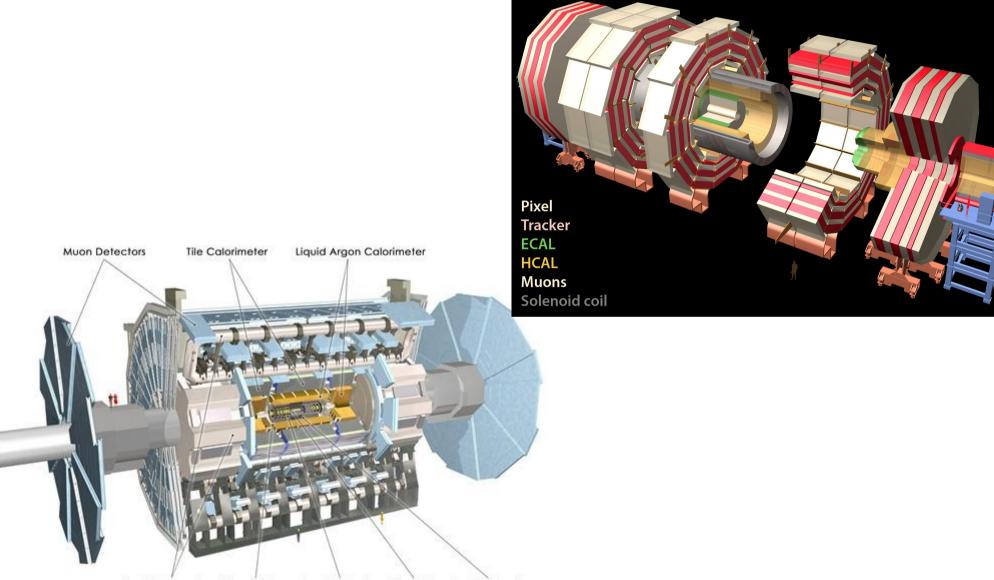
- event complexity
- data volume

CMS: $Z \rightarrow \mu \mu$ with 78 vertices

ATLAS: $Z \rightarrow \mu\mu$ with 25 vertices

2. Integrated Luminosity

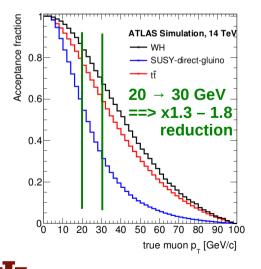
radiation damage

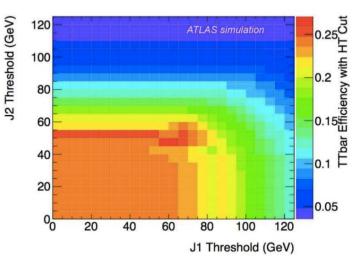

3. Component Activation

- constraints on detector manipulation

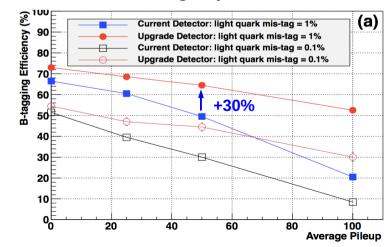
Current ATLAS & CMS Detectors

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker




Example Channels	Objects Required
W, Z, tĪ	 single e,μ triggers with p_T ~ 20 GeV di-jet triggers in the 60–80 GeV range
$HH \rightarrow b\bar{b}\gamma\gamma \& t\bar{t}H,H \rightarrow \gamma\gamma$	 photons with E_T ~ 25 GeV retain/improve current b-ID performance
VBF, H → ττ	 retain/improve τ-ID performance
$VBF: H \to YY \And H \to WW$	 retain forward jet capabilities
squarks, gluions, stops	missing Energy + b-ID

ATLAS: µ Thresholds



Hal Evans

ATLAS: jj Trigger Thresholds $(t \, \overline{t})$

CMS: Phase-1 b-tag improvements

Energy Frontier R&D

13

ATLAS & CMS Upgrade Overview

	Phase	ATLAS Upgrades	CMS Upgrades
	Phase 0	 new insertable b-layer pixels (IBL) + services new AI beam pipe new low voltage power supplies for calorimeters finish installation of EE muon chambers (staged) topological triggering at Level-1 dataflow improvements (merge L2/EF/EB) new evaporative cooling plant added neutron shielding 	 new beam pipe (necessary for pixel repl. 2016/17) complete muon coverage (4th endcap layer) barrel drift tube electronics replace HCAL forward photo-detectors (new PMTs) replace outer HCAL photo-detectors (SiPMs) Level-1 trigger upgrade DAQ improvements
	Phase 1	 new Small Wheel (nSW) for forward muon system higher granularity calo information to Level-1 fast tracking trigger (FTK) at Level-2 expanded topological capabilities at Level-1 	 pixel detector replacement (2016/17) HCAL electronics/granularity upgrade complete Level-1 trigger upgrade
	Phase 2 (tentative)	 complete tracker replacement (all silicon) calorimeter electronics upgrade (fully digital) muon system/electronics upgrades forward calorimeter upgrade/replacement track trigger at Level-1 overhaul of trigger architecture 	 complete tracker replacement forward region: tracking, calorimeters, muons track trigger at Level-1 further trigger upgrades

note: lots of standard maintenance and improvements at each phase

- Phase 0: all projects now in production
- Phase 1: R&D well advanced for most projects
- Phase 2: R&D started for many projects

Summary of Main US R&D Efforts in the following slides

(some) Joint ATLAS-CMS R&D

Common CERN RD Projects

- RD42 Diamond Detectors
- RD50 Silicon Detectors
- New 65 nm Chip Design

http://rd42.web.cern.ch/rd42/ http://rd50.web.cern.ch/rd50/ 27 Nov, 2012 meeting

Versatile Link Project

- rad-hard, bi-directional optical link at ~5 Gbs
- https://espace.cern.ch/project-versatile-link/public/default.aspx

QIE10: Charge Integrating ADC with TDC

- studying adapting Fermilab design for ATLAS TileCal and CMS HCAL

Many other Joint Efforts

- xTCA, Power, ...

ATLAS-specific R&D

Tracking

- Pixels: large wafers, edge reduction, rad hardness, electronics, optical transmission
- Strips: mechanics, cooling, powering, electronics, DAQ

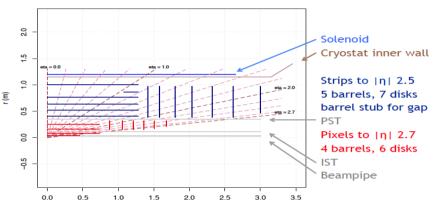
Calorimetry

- rad-hard ADC (Phase 1) for Liquid Argon
- QIE ASIC for TileCal
- detector development for Forward Calorimetry

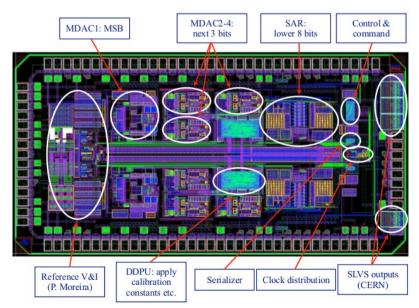
Trigger

- Level-1 Track Trigger

Timeline


Hal Evans

Ph-1 TDRs:


summer-fall 2013

Energy Frontier R&D

Lol tracker layout

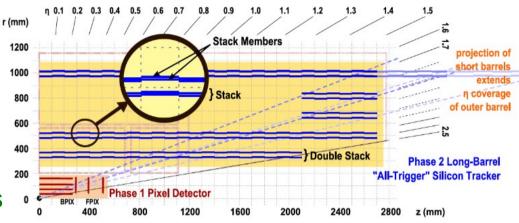
Nevis12: dual 12-bit ADC

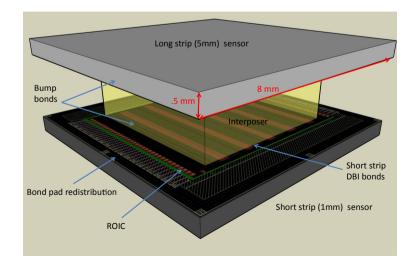
CMS-specific R&D

Tracker

 rad-hard sensors/electronics, cooling, DC-DC powering

Forward Calorimetry


- rad-hard crystals/ceramics, fibers
- GaAs photosensors
- readout schemes


Trigger

Level-1 Track Trigger

Timeline

- Ph-2 Technical Proposal: 2014
- TDRs: ~2016

Conclusions

Strong Physics Case for LHC Upgrade Program

- continued studies of Higgs-like particle
- direct detection of new particles at highest mass scales

Accelerator Plan can provide data to meet our goals

- 350 fb⁻¹ $L \rightarrow 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ by ~2021 (Phase 1)
- 3000 fb⁻¹ $L \sim 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (levelled)

ATLAS and CMS upgrades to deal with this data

- event pileup, radiation damage, activation
- Phase 1: projects well-defined, moving into construction phase
- Phase 2: R&D needed in many areas
 - > rad hard detectors & electronics; data transmission; powering;...
 - > a lot of ongoing effort in the US

by ~2030 (Phase 2)

