3D Sensor Technologies

HL-LHC Vertex Needs

- Higher track density better segmentation
- Many interactions better vertex resolution along beam axis
- Improved radiation tolerance
- Better timing
- Lower system mass
- Hermeticity

-SLAC

What should be improved in vertex and tracking detectors?

Radiation tolerance – ideally 1 x 10¹⁷ n/cm2

- Reachable by smaller electrode pitch and internal gain

Spatial resolution – possible now, limited by electronics

- improved fabrication techniques will help

System mass – active edges, integrated cooling, lower bias voltages may help

Vertex layer hermeticity – active edges help

Timing to mitigate pileup – already fast enough, smaller pitches

Radiation hardness – 3D sensors

SLAC

- Depleted perpendicular to the sensor surface
- Minimize signal drift distance and time
- Less trapping of signal
- Leads to improved radiation tolerance over planar design
- Lower bias voltages = lower power = less cooling load
- S. Parker, C. Da Via, J. Hasi

Double sided full-through columns FBK

Double sided partially-through columns CNM

Radiation Tolerance

Internal amplification

Observed in both planar and 3D sensors after irradiation

3D has a similar geometry to wire chambers

Design electrode configuration and doping levels to provide gain

May improve radiation tolerance further

3D Measurements

Width (3.203 ± 0.004) mm (Expectation = drawn width = 3.195 mm) Lower edge : σ (4.3 ± 4.1) µm; 10%-90% interval (11.0 ± 4.2) µm Upper edge: σ (9.7 ± 3.0) µm; 10%-90% interval (25.0 ± 8) µm σ (edge) largely from beam telescope, alignment errors

Full 3D with Active Edges

SINTEF - Norway

- Full 3D process
- Active edges
- Uses support wafer
- ~ 1 micron dead band on edge
- Bonded to ATLAS FE-I4

Conference Record, (2009) 1623 - 1627

SiO2 AI Trench (Doped poly) 5µm n-electrode doped poly) 14um 4um SiO2 1µm Si Support Wafer First ToT distribution seen 350 with 3D Sintef Full Column Active edges (device biased with 20V) 250 100 150 200

SLAC

8

Implanted Active Edges

- Similar to standard active-edge process
- Uses support wafer and deep plasma etch
- Uses angled implants to dope edges
- Does not fill the trenches for planarization
- Sub-micron dead band

VTT – J. Kalliopuska, et al., Nuclear Instruments and Methods in Physics Research A 633 (2011) S50–S54

Cleaved Slim Edges

UCSC + NRL

- Normal planar process
- Scribe
- Cleave
- Passivate the edge via ALD or PECVD
- Down to 14 micron dead band on the edge

M. Christophersen, et al., Nuclear Instruments & Methods In Physics Research A (2012), http://dx.doi.org/10.1016/j.nima.2012.04.077

Slim Edges

-SLAC

GF Della Betta et al., FBK + Trento

TOTEM – Slim Edge Design

- One side is a slim edge
- Other sides have normal guard rings
- Has a diffusion ring to collect the large edge currents
- Has a diffusion ring to terminate electric fields
- 60 micron dead band on edge
- Used in LHC close to primary proton beam

Current terminating Clean-up ring Sensitive area Voltage terminating rings

G. Ruggiero et al. IEEE Trans. Nucl. Sci. 52 (2005) 1899.

Examples of active-edge sensors

Active Edges

Many institutions are focused on this

- Pursuing many variations
- Already used some in photon science
- Will be incorporated in growing fraction of HEP detectors

Front side Bias

Form abrupt junction to edge

Carry potential to backside via doped active edge

SLAC

Front-side contact to supply backside bias via edge

Micro-cooling Channels

Done with Shaday Edwards (St. Francis College Joris van Heijningen (NIHKEF)

- Reduce mass within a vertexer
- Integrate the cooling pathways into the circuit chip
- Uses the silicon of the chip to both support the circuitry and serve as a coolant conduit
- Compatible with many different heat-carrying fluids

Self-sealing, cooling Channels

Done with Shaday Edwards (St. Francis College Joris van Heijningen (NIHKEF)

- Narrow apertures define channel geometry
- Isotropic etch via the apertures
- Deposit conformal film to seal apertures

Progress

Many groups working towards this

-SLAC

Extension to Diamond

Used femtosecond laser to form graphitized wires through diamond chips

Promising preliminary testbeam results

Manchester: A. Oh, S. Watts, M. Ahmed, C. Da Via, I. Haughton, V. Tyzhnevyi, D. Whitehead Zuerich: L. Baeni, F. Bachmann, R. Wallney, D. Hits Ohio: H. Kagan CEA Saclay: B. Cayler, M. Pomorsji, CERN: T. Wengler

Survey telescopes

 Wide-area optical surveys for cosmology, such as SDSS, DES, LSST, all utilizing silicon optical sensors, CCDs or CMOS imagers combined with optical filters to determine some information about the spectral color of objects

 Determination of Photo-Z is critical for addressing many questions in cosmology

 SDSS and LSST use 5 and 6 filters, which respectively absorb 80% and 83% of the incident light. Filters

Chu-En Chang, J. Segal, R. Howe, A. Roodman

Multi-layer CCD - concept

- Clear need for color-sensitive sensors
- Replace monochromatic-CCD, filter-set combination with a polychromatic sensor.
- Use color-dependence of interaction depth in silicon.
- Basic idea is to make a multi-layer CCD
- All layers are clocked out simultaneously by the same set of gate electrodes
- Each layer readout separately, but simultaneously
- Employ micro-machining technology for channel stops and read-out contacts – similar to 3D sensors
- Alternative technologies use TES and MKIDs

Multi-layer CCD

- Imager, which can record the intensity of light within multiple color bands and with high quantum efficiency
- Reduces the number of images to be taken -> Effectively increases light gathering ability of a telescope
- Easy to add more layers/colors
- Extension of standard CCD process
- Performed optical simulations, device simulations, process simulations, and begun fabrication of prototype devices
- Many other applications
- Huge 4X improvement in effective systemlevel quantum efficiency

Multi-layer CCD - fabrication

Fabrication of many layers of thin, float-zone silicon separated by oxide films done in partnership with local company

Channel-stop trenches same a used in 3D sensors

Isolated, conducting vias demonstrated

Complete prototype batch in early 2013

Near Term

- 3D silicon sensors routinely manufactured by several institutions
- Technology continues to improve
- Can be extended to HL-LHC fluences and time structure
- Possibility to incorporate internal signal gain
- Active edges/edgeless/slim edges could improve angular coverage in vertexers and trackers
- Internal gain enables thinner sensors
- Leading to other micro-machined features: thin sensors, μ channel cooling, novel CCDs, etc.
- Multi-band CCD may impact astrophysics and other fields
- Still an exciting dynamic period
- Lots of room left to explore in the creativity space associated with the third dimension

SL