# Status of the dark-noise and gain measurements in Valencia

Julio Ureña, Carlos G. Benítez, Jose A. Soto

Photosensors WG - 16 January 2023





### From 2023/10/31 talk on Photosensors WG

Our trigger

### Trigger for the signal

For the Gain Analysis signal capture, the trigger is the Sync Signal from the LED.

#### But...

We have a problem to capture the signal in "self-trigger" because the system have a burst sinusoidal noise. For this case we implemented a special trigger.



If the signal voltage > level and Pulse duration > △T = Signal trigger

We are working to solve this problem, to eliminate the noise.

<u>Julio Ureña, Carlos G. Benítez, Jose</u> A. Soto



### From 2023/10/31 talk on Photosensors WG

## Our trigger overlooked single-PEs

### Measurement 1 of Tray 68 (Strips 1425, 1426 & 1429) - Burstless









### Results from [1]

| SiPM   |         | Gain     |          | DCR+B (mHz/mm <sup>2</sup> ) |         | DCR-B (mHz/mm <sup>2</sup> ) |         | Xtalk (%) |         | Afterpulses (%) |         |
|--------|---------|----------|----------|------------------------------|---------|------------------------------|---------|-----------|---------|-----------------|---------|
| Model  | PDE (%) | Mean     | Std Dev  | Mean                         | Std Dev | Mean                         | Std Dev | Mean      | Std Dev | Mean            | Std Dev |
|        |         |          |          |                              |         |                              |         |           |         |                 |         |
| 75 HOD | 40      | 3.93E+06 | 0.09E+06 | 58                           | 11      | 28                           | 10      | 6.6       | 0.7     | 0.9             | 0.2     |
| 75_HQR | 45      | 4.83E+06 | 0.09E+06 | 65                           | 18      | 26                           | 7       | 9.0       | 1.0     | 1.1             | 0.4     |
|        | 50      | 5.70E+06 | 0.000    | 55                           | 17      | 20                           | 0       | 110       | 1.0     | 1.2             | 0.2     |

Julio Ureña, Carlos G. Benítez, Jose A. Soto





19

### **Further tests**

Using just one amplifier, Carlos took new dark noise data for one SiPM (pre-production) at four different voltages, [44, 44.5, 45,46] V (operation voltage is ~54.80 V at warm)

- After the peaks analysis, 300 (out of the 1000 acquired) fast frames of each one of the four datasets were visually inspected.
- Only 12 misidentified (noise-induced) peaks were spotted, out of the 1250 peaks which were detected in the 300\*4=1200 inspected frames, i.e. a 12/1250 ~ 1% error.

Measurements with the new card do not display as-ample noises, which let us lower the trigger threshold.

- The amplitude vs. time-delay histograms now resemble our reference to a larger extent than previous results (XTP and APP are smaller)
- However, DCR is not compatible with the reference anymore → Light might be leaking into our black box





# Methodology

- We improved the light-sealing of the box
- We fine-tuned our duration-trigger
  - o To do so, we analyzed dark noise data which was taken using a simple threshold trigger
  - In such analysis, we use an offline filter



# Offline filter and trigger set-up

- Given a frame, we consider a reduced time window and check whether the signal drops below a certain threshold in such window. If so, then this frame is considered to be a noisy one.
- We use this criterion to split our set of frames into two sets, one containing noisy frames and another one containing common waveforms.
- We then study the width of the first peak spotted in each frame, to fine-tune the duration trigger in our oscilloscope.











# **Trigger validation**

- In order to validate our duration-trigger, we compare its results to those gotten when
  - using a (simple) threshold trigger and eliminating the noisy fast frames offline using the previous-slide filter
- The results did not match
- We thought that
  - the duration-trigger was working fine
  - the discrepancy came from a possible DCR thermalization and the time in between duration-trigger and threshold-trigger measurements
- To check this, on Dec 5th, Carlos performed a measurement which involved, in the following order:
  - o 10 mins. dark noise data-taking with a fixed pre-production SiPM for 18 times in a row
  - LN2 refilling
  - 6 more data-takings alternating threshold- and duration-trigger (3 times each type of trigger)
- The results motivated another data-taking, which was performed on Dec 11th using a similar scheme **See** results in the next slides



## **DCR vs. time in cold** (TT - Threshold trigger, OF - Offline filter)

Dec 5th meas. - first SiPM of the <u>first pre-production</u> board plugged to the <u>first massibo socket</u>

Dec 11th meas. - first SiPM of the <u>second pre-production</u> board plugged to the <u>second massibo socket</u>







# Offline filter



Some examples of discarded frames

Some of the accepted ones

On average, 2404 frames per data-taking were recorded, from which 685 frames were filtered out, meaning that a 28% of the frames are discarded.

The efficiency of the offline filter is ~99%. It will be improved for future analysis.

# **Trigger validation results** (DT - Duration trigger, TT - Threshold trigger, OF - Offline filter)

Dec 5th meas. - first SiPM of the <u>first pre-production</u> board plugged to the <u>first massibo socket</u>

Dec 11th meas. - first SiPM of the <u>second pre-production</u> board plugged to the <u>second massibo socket</u>



### Gain vs. time in cold

Dec 5th meas. - first SiPM of the <u>first pre-production</u> board plugged to the <u>first massibo socket</u>

- first SiPM of the **second** pre-production board plugged to the **second** massibo socket Dec 11th meas.



150

## Reference

[1] Cryogenic Characterization of Hamamatsu HWB MPPCs for the DUNE Photon Detection System M. Andreotti et al